
www.manaraa.com

The Pennsylvania State University

The Graduate School

The Mary Jean and Frank P. Smeal College of Business Administration

ESSAYS IN COLLABORATIVE SUPPLY CHAINS:

INFORMATION SHARING, EVENT MANAGEMENT

AND PROCESS VERIFICATION

A Thesis in

Business Administration

by

Rong Liu

 2006 Rong Liu

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2006

www.manaraa.com

3334003

3334003
 2008

www.manaraa.com

The thesis of Rong Liu was reviewed and approved* by the following:

Akhil Kumar
Professor of Information Systems
Thesis Advisor
Chair of Committee

Dawn M. Russell
Assistant Professor of Supply Chain and Information Systems

Alan J. Stenger
Professor of Supply Chain Management

John Yen
University Professor of Information Sciences and Technology

John E. Tyworth
Professor of Supply Chain Management
Chair of the Department of Supply Chain and Information Systems

*Signatures are on file in the Graduate School

www.manaraa.com

iii

ABSTRACT

With the advent of information technology in a highly interconnected economy,

supply chains are required to be agile and adaptive. An agile and adaptive supply chain

can sense changes or events in real time and respond to them quickly by self adjustment.

This adjustment involves changes in information sharing and supply chain processes.

Therefore, information sharing, event management, and process modeling and

verification play an important role. In this dissertation, each of these issues is addressed

in a separate essay. Therefore, this dissertation consists of three interrelated essays.

The first essay describes a new methodology for achieving supply chain

configurations by dynamic information sharing. We propose a parameterized model to

analyze information sharing. By changing the parameters of this model, we actually

adjust information sharing needs and achieve different supply chain configurations,

which are further evaluated in terms of supply chain performance. When events or

changes bring new information sharing needs, we can respond to the needs with suitable

configurations.

The second essay focuses on supply chain events. A formal approach based on

colored time Petri nets is developed to model and analyze events. Based on Petri net

models, we derive dependency graphs to analyze causal relationships between events. We

also perform sensitivity analysis to show the impact of different event resolution

strategies on supply chain performance.

The third essay models and verifies supply chain processes based on workflow

technologies. Inter-organizational processes are usually complicated and unstructured.

www.manaraa.com

iv

We describe a taxonomy that serves as a framework for analyzing unstructured

workflows. The taxonomy characterizes unstructured workflows in terms of two

considerations: improper nesting and mismatched pairs. Based on this taxonomy, we

develop a diagnosis algorithm that can detect structural flaws, show causes of flaws and

draw conclusions on workflow correctness.

Based on the results of these three essays, we are able to develop a technical

architecture for agile and adaptive supply chains. This architecture contains an event

management engine to detect and analyze events. Suitable configurations are selected in

response to events. Finally, processes are carefully verified to ensure accurate

information sharing and supply chain configurations.

www.manaraa.com

v

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES...xiii

ACKNOWLEDGEMENTS...xv

Chapter 1 Introduction ..1

1.1 Problems to Be Addressed..2

1.2 Thesis Structure ..4

Chapter 2 Information Sharing in Supply Chains: Modeling, Configurations, and
Results..7

2.1 Introduction...7

2.2 SCOR Model and Other Related Work ..11

2.3 Information Sharing Model ..15

2.3.1 Information Sharing Structures ..15

2.3.2 Information Sharing Objects ..17

2.3.3 Information Sharing Modeling ...19

2.4 Configuring Supply Chain Processes ...24

2.4.1 Methodology...24

2.4.2 Example: Vendor Managed Inventory (Step 1)....................................26

2.4.3 Supply Chain Configurations (Step 2) ...28

2.4.4 Verification of Supply Chain Configurations (Step 3).........................36

2.5 Simulation (Step 4) ...38

2.5.1 Simulation Setting ..40

2.5.2 Simulation 1 – Comparing Weekly Sharing, Daily Sharing, and
Mixed Sharing ..44

2.5.3 Simulation 2 – Comparing Static vs. Dynamic Reorder Point47

2.5.4 Simulation 3 – Sharing Information about Event Occurrences............49

2.5.5 Configuration Sensitivity Analysis...51

2.5.5.1 Sensitivity to Carrying Cost and Shortage Cost.........................51

2.5.5.2 Sensitivity to Penalty..53

www.manaraa.com

vi

2.5.5.3 Sensitivity to Demand Variability..55

2.5.6 Discussion of Supply Chain Configurations ..58

2.6 Implementation ...60

2.7 Conclusion and Future Work..61

Chapter 3 A Formal Modeling Approach for Supply Chain Event Management63

3.1 Introduction...63

3.2 Overview of Supply Chain Events ...66

3.3 Petri Net Preliminaries..68

3.4 Event Formulation and Event Patterns ...70

3.4.1 Event Semantics ...70

3.4.2 Event Patterns to Model Supply Chain Rules73

3.4.3 Composing New Patterns and Creating User-Defined Patterns83

3.5 An Example of Event Causality Analysis Using Petri Nets85

3.5.1 Scenario of Events and Rules for a Complete Petri Net.......................86

3.5.2 Dependency Graph Analysis ..92

3.6 Simulation Results ..96

3.7 Comparison with Related Work ...100

3.8 Conclusions...102

Chapter 4 An Analysis, Taxonomy and Correctness Algorithms for Unstructured
Workflows..104

4.1 Introduction...104

4.2 Workflows Definitions and Taxonomy ..110

4.2.1 Workflow definition ...110

4.2.2 Semantics of Control Elements ..112

4.2.3 Structured Workflows ..113

4.2.4 Unstructured Workflows – Taxonomy...114

4.2.5 Workflow Correctness..117

4.2.6 Workflow Correctness Taxonomy ...120

4.3 Analysis of Structural Flaws...122

4.3.1 Blocked Nodes and Deadlocks...122

www.manaraa.com

vii

4.3.2 Testing Potentially Blocked Nodes ..128

4.3.2.1 Algorithm – Checking a Potentially Blocked Node...................128

4.3.2.2 Algorithm – Checking Multiple Potentially Blocked Nodes131

4.3.2.3 Examples ..134

4.3.3 Multiple Instances ..139

4.4 Finding Equivalent Structured Mappings...140

4.4.1 Equivalence Preserving Mapping...141

4.4.2 Possibility of Equivalence Preserving Mapping...................................143

4.4.3 OR-OR/AND-AND Improper Nesting...144

4.4.4 AND-OR Improper Nesting and Overlapping Structures148

4.4.5 Q-equivalent Mappings for Mismatched (AND, OR) Pairs149

4.5 Introducing Loops...149

4.5.1 Scenarios and Taxonomy ...151

4.5.2 Mappings ..152

4.5.3 Results and Algorithm..153

4.6 Workflow Diagnosis Algorithm and Results..156

4.6.1 Algorithm Outline ..156

4.6.2 Experimental Results..159

4.7 Discussion and Conclusion...162

Chapter 5 Discussion and Conclusions...164

5.1 Summary...164

5.2 Contributions ..166

5.3 Implications to Supply Chain Management Practices168

5.3.1 A New Supply Chain Infrastructure ...168

5.3.2 Organizational Memory..170

5.4 Limitations and Future Work..172

Bibliography ..175

Appendix A Simulation of Petri net in Figure 3-18..183

A.1 Hierarchical CPN Mapping ...183

www.manaraa.com

viii

A.2 Implementation of Time Constraints ...183

A.3 Implementation of Inhibitor Arcs ..186

Appendix B Lemma 12...188

Appendix C Notations...191

www.manaraa.com

ix

LIST OF FIGURES

Figure 1-1: Problems to Be Addressed ...4

Figure 2-1: Overview of Supply Chain Configurations..11

Figure 2-2: Information Sharing Structure ...15

Figure 2-3: Vendor Managed Inventory (VMI)..27

Figure 2-4: Modeling VMI Process with UML Activity Diagram...........................28

Figure 2-5: Modified VMI Process Shown in a Revised UML Diagram.................34

Figure 2-6: Data Model of Configurations ...37

Figure 2-7: Design of Simulation Prototype...39

Figure 2-8: Probability Density Function of Gamma Distributions41

Figure 2-9: Sensitivity Analysis of Cost...52

Figure 2-10: Total Cost Sensitivity to Shortage and Carrying Costs..........................53

Figure 2-11: Sensitivity to Penalty ...54

Figure 2-12: Sensitivity of Configurations to Demand Variability57

Figure 2-13: Architecture of an Information Sharing and Event Management Hub ..61

Figure 3-1: Colored Time Petri Net ..70

Figure 3-2: Petri Net of Example 1 Showing a Rule R...72

Figure 3-3: Petri Net Representation for Non-Consumption Case72

Figure 3-4: Petri Net of Example 2 (Pattern 2)...75

Figure 3-5: Petri Net Model of an Order Process (Pattern 3)77

Figure 3-6: Petri Net for 1 of N Causes – Single Result (Pattern 4)78

Figure 3-7: Petri Net of Example 4 (Pattern 4)...79

Figure 3-8: Petri Net for 1 Causes – N Results (Pattern 5).......................................80

www.manaraa.com

x

Figure 3-9: Petri Net of Example 5 (Pattern 5)...80

Figure 3-10: Petri Net for N Causes – 1 Result Pattern ..81

Figure 3-11: Petri Net of Example 6 (Pattern 6)...81

Figure 3-12: Non-Occurrence Pattern (Pattern 7)...82

Figure 3-13: Petri Net Example 7 (Pattern 7) ...82

Figure 3-14: Composing Event Initialization Pattern by Combining Patterns 6
and 7...85

Figure 3-15: Composing Consecutive Events Pattern from Event Initialization
Pattern and Pattern 6 ..85

Figure 3-16: Interactions between Trading Partners in the Example Supply Chain...87

Figure 3-17: Possible Events in the Supply Chain..87

Figure 3-18: A Supply Chain Event Petri Net ..91

Figure 3-19: Mapping Rules 1 and 2 (in Figure 3-18) to CPN Tools.......................91

Figure 3-20: Dependency Graph of Table 3-1 (Exceptions Shaded).........................94

Figure 3-21: Dependency Graph of Table 3-2...96

Figure 4-1: Order Handling in a JIT Supply Chain (AND-OR Improper Nesting)..107

Figure 4-2: A Paper Review Process (AND-OR Mismatched Pair).........................107

Figure 4-3: Graphical Representations of Workflow Control Elements (or
Nodes)..112

Figure 4-4: Basic Types (or Patterns) of Structured Workflows114

Figure 4-5: An Workflow with Mismatched Pairs and Improper Nesting115

Figure 4-6: First-Order Improper Nesting ..121

Figure 4-7: Two Workflows with Blocked Node C2J..123

Figure 4-8: Examples with Potentially Blocked Node C1J124

Figure 4-9: A Strictly Correct Workflow (but with Improper Nesting)125

www.manaraa.com

xi

Figure 4-10: A Workflow with (AND OR AND) [
] (OR, OR); No blocked nodes126

Figure 4-11: Algorithm — Checking a Potentially Blocked Node.............................129

Figure 4-12: Algorithm – Checking Multiple Potentially Blocked Nodes133

Figure 4-13: Example 1: Non-blocked Node C1J ..135

Figure 4-14: Example 2: A Deadlock-free Workflow with Blocked Node C2J.........136

Figure 4-15: Example 3: Testing Blocked Node C1J and C1J.in = "LR"..................137

Figure 4-16: A Workflow with Multiple Potentially Blocked Nodes.........................138

Figure 4-17: A Workflow with (AND, OR) Pair; No Multiple Instances139

Figure 4-18: Algorithm for Checking Multiple Instances ..140

Figure 4-19: A workflow with its Equivalent Structured Mapping............................142

Figure 4-20: An Unstructured Workflow with Q-equivalent Mapping142

Figure 4-21: Algorithm for Mapping Workflows with OR-OR Improper Nesting144

Figure 4-22: Steps in Mapping Unstructured wf1 into Structured wf3145

Figure 4-23: AND-AND Improper Nesting; No Structured Mappings146

Figure 4-24: Equivalent Structured Mapping of a Special AND-AND Improper
Nesting ...147

Figure 4-25: Algorithm for Mapping Workflows with AND-AND Improper
Nesting ...147

Figure 4-26: An overlapping Structure and Its Mapping..148

Figure 4-27: Structures Entering and Leaving loops ..150

Figure 4-28: Q-Equivalent Mapping of Type 1N with a Loop...................................153

Figure 4-29: Equivalent Structured Mapping of Type 3N with a Loop153

Figure 4-30: Structured Mapping of Type 3X (Loop) (With Auxiliary Variables)....154

Figure 4-31: Type 1X (Loop) ...155

Figure 4-32: Algorithm for Analyzing Unstructured Loops.......................................156

www.manaraa.com

xii

Figure 4-33: The Outline of the Workflow Diagnosis Algorithm157

Figure 4-34: A Diagnosis Experiment ..159

Figure 4-35: A Snippet of a Sample Algorithm Input File ...160

Figure 4-36: Analysis Report of Workflow in Figure 4-34 ..161

Figure 4-37: Classes of workflows ...163

Figure 5-1: A Supply Chain Architecture...170

Figure A-1: CP-Net (Level 1) ..184

Figure A-2: Subpage for "Rule8&9" (Level 2)..184

Figure A-3: Subpage for "Rule8" (Level 3)...185

Figure A-4: Time Petri Net ..186

Figure A-5: Implementation with CPN Tools ...186

Figure A-6: Rule 1 with an Inhibitor Arc ..187

Figure A-7: CPN Implementation of Rule 1..187

Figure B-1: Two Types of Bypasses of Blocked Nodes..189

www.manaraa.com

xiii

LIST OF TABLES

Table 2-1: A Sample Supply Chain Configuration...13

Table 2-2: Examples of Information Flows ..23

Table 2-3: Sample Data in Configuration Table for VMI (Configuration C1).........30

Table 2-4: Configuration for Real-Time Information Sharing (C2)31

Table 2-5: Configuration with Dynamic Reorder Point (C4)33

Table 2-6: Supply Chain Configuration with 3rd Party Delivery (C5)35

Table 2-7: Configuration with Shared Information about Event Occurrences
(C7)..36

Table 2-8: Simulation Setting ...41

Table 2-9: Flow Table for Configuration (C1) with Specific Parameters42

Table 2-10: Cost Structure of VMI Arrangement...43

Table 2-11: Number of Each Type of Simulated Flow...45

Table 2-12: Performance Comparison of C1, C2 and C3 ...45

Table 2-13: Cost Comparison of C1, C2 and C3 ..46

Table 2-14: Gamma(α, β) Distributions of the Actual Usage in Four Seasons47

Table 2-15: Performance Comparison of C2 and C4 with Seasonal Actual Usage....48

Table 2-16: Cost Comparison of C2 and C4...49

Table 2-17: Performance Comparison of C2 and C7..50

Table 2-18: Cost Comparison of C2 and C7...51

Table 2-19: Distributions and Variability of Daily Demand55

Table 3-1: A Trace of Possible Event Sequence Generated from Figure 3-18........93

Table 3-2: An Alternative Scenario of Events Generated from Figure 3-18............95

Table 3-3: Simulation Parameter Settings ..97

www.manaraa.com

xiv

Table 3-4: Comparing Different Strategies in Terms of Events98

Table 3-5: Numbers of Out-of-Stock Events ..99

Table 4-1: Behavior of First-Order Improper Nesting and Mismatched Pair
Types ...121

Table 4-2: Behavior of Structures Entering a Loop..152

Table 4-3: Behavior of Structures Exiting a Loop..152

www.manaraa.com

xv

ACKNOWLEDGEMENTS

I would like to express my gratitude to all people who have given me great

support during my five-year journey. It would be impossible for me to complete this

thesis alone without their generosity and kindness.

The first person I would like to thank is my advisor, Dr. Akhil Kumar. I deeply

thank him not only for gently, patiently, yet firmly guiding me towards the completion of

this thesis from the very beginning, but also for his care of my professional development

and valuable training in pursuing my personal and professional goals in my life. His

generous support and warm encouragement has always been a great source of strength

and confidence for me over the years. I also would like to thank my committee members,

Dr. Dawn Russell, Dr. Alan Stenger and Dr. John Yen for being supportive and providing

constructive comments on my thesis. Special thanks to Dr. Dawn Russell for her

weariless counseling and emotional support.

I also extend my gratitude to Dr. W.M.P. van der Aalst of Eindhoven University

of Technology, Netherlands, whom I never met but worked with on some portion of this

thesis and patiently answered my questions on Petri Nets. In addition, grateful thanks to

IBM for providing generous financial support to this research.

 A hearty thanks to the department of Supply Chain and Information Systems for

the generous financial support during my graduate study. Special thanks to Beth Bower,

Alice Young, Teresa Lehman and LuAnn Jaworski for their superb administrative

assistance and convenience provided to make my life at the office enjoyable and hassle

free.

www.manaraa.com

xvi

I am very grateful to my officemate, Dr. Kusumal Ramsook, for her years of

warm-hearted support and friendship ever since we became to know each other.

Finally, I would like to thank my big family that stand behind me back in China.

My deep and everlasting thanks go to my father, who never had a chance to see me reach

this point, but I know he has always been watching me there ever since I was born.

Always thank my husband for his unconditional and endless love. He is my outstanding

proofreader and also the one who sat close to me and accompanied me in writing this

thesis through numerous long nights.

www.manaraa.com

Chapter 1

Introduction

Supply chains have been transformed completely with the advent of sophisticated

information technology in highly interconnected event-driven economy [56]. In the

event-driven economy, supply chains should be able to react responsively to internal or

external events in order to meet consumers’ demand. This reflects a need for sense-and-

respond capability [32]. For example, in an integrated supply chain with tight delivery

times and low tolerances, unexpected events or exceptions occur almost regularly

because of gaps between planning and actual execution in a dynamic environment [11].

Even a minor unexpected event such as a late arrival of a shipment or a machine

breakdown can propagate in such a supply chain and has far-reaching effects, such as the

well-known bullwhip effect [48]. Therefore, a supply chain must be able to handle such

events responsively and appropriately [42]. It is well known that information sharing

plays a key role in achieving this capability [30, 52, 56]. Supply chain partners can share

relevant information in a wide range of areas, such as demand, inventory and shipment

status as well as strategic information, including market trends and production

capabilities, in order to respond to inevitable unanticipated events.

Moreover, to facilitate prompt and accurate information sharing, business

processes are integrated across supply chain partners [56], resulting in complicated inter-

organizational processes. It is essential that a process should not only precisely capture

business requirements but also ensure successful execution. A problematic process could

www.manaraa.com

2

fail to execute properly and cause considerable loss to a business. As integrated processes

become more complex, process verification assumes greater importance.

1.1 Problems to Be Addressed

In this research, we attempt to address the three related issues in collaborative

supply chains: information sharing, supply chain event management, and process

modeling and verification. As supply chains evolve beyond the confines of individual

organizations, information sharing has become the Holy Grail in supply chain

technology. Although the value of information sharing is well recognized, there is little

research on how to achieve dynamic information sharing. Dynamic information sharing

requires that when events or changes in supply chains raise new information sharing

needs, information sharing is adjusted in a timely manner and supply chain processes are

also adjusted accordingly in support of the needs. We investigate how to leverage

information sharing dynamically in response to events or changes in supply chains.

Second, to respond to events quickly and appropriately, we need to understand

events, especially, their causes and consequences. A supply chain can generate a large

number of events. Some events have significant consequences while others may be

trivial. A methodology is needed to extract significant events and suggest effective

solutions to them promptly. We design a formal approach to modeling supply chain

events. This approach can facilitate cause-effect analysis to achieve real-time visibility

about the implications of events and also traceability to the root causes of events.

www.manaraa.com

3

Moreover, this approach can help decision makers to evaluate event resolution strategies

in terms of supply chain performance through simulation.

Finally, integrated supply chain processes must be carefully verified to ensure that

information is exchanged among supply chain partners as required. Workflow technology

has emerged as an important tool for businesses to integrate processes across supply

chains. A correct workflow represents a process which can be executed properly without

any deadlocks or other structural flaws. One accepted notion of correctness is

structuredness. Structured workflows are always correct but they are restrictive because

strict rules must be followed during the workflow design phase. Inter-organizational

processes, which are typically integrated from individually designed processes, may not

follow these rules and tend to be unstructured. Therefore a systematic approach is needed

to analyze and verify unstructured workflows. We develop a taxonomy that serves as a

framework for analyzing unstructured workflows. The taxonomy characterizes

unstructured workflows in terms of two considerations: improper nesting and mismatched

pairs. This taxonomy can be used to detect structural flows, give correction suggestion on

structural flaws, and analyze the possibility of transforming an unstructured workflow to

a structured one. An analysis algorithm for unstructured workflows is developed based on

this taxonomy.

Figure 1-1 shows the three problems to be addressed. As this figure shows, supply

chain events are analyzed and significant events are extracted. To respond to these

events, information sharing needs may be changed. Therefore, information sharing is

adjusted in terms of relevancy, timeliness, format, etc. As a result, processes, especially,

inter-organizational processes, may be changed accordingly in order to meet these

www.manaraa.com

4

information sharing needs. These processes should be verified carefully to ensure their

correct execution.

1.2 Thesis Structure

This dissertation consists of three separated, but interrelated essays, as shown in

Figure 1-1. These three essays are organized into three chapters (Chapters 2-4). Each

chapter contains a separate research paper with its own introduction, main body and a

conclusion.

The first essay (Chapter 2) studies dynamic information sharing. It proposes a

parameterized model to analyze information sharing and develops a methodology for

designing supply chain configurations. By changing the parameters of this model, we

actually adjust information sharing needs, and as a result, achieve different supply chain

configurations. A supply chain configuration refers to a set of supply chain activities, the

specific pattern of inter-organizational linkages and information sharing between them.

Supply chain configurations are the means of responding to events or changes in supply

chains quickly and appropriately. A complete example is used to demonstrate this

Figure 1-1: Problems to Be Addressed

Adjust Information sharing
and configure supply

chains (Essay 1)

Analyze and respond to
supply chain events

(Essay 2)

Verify supply chain
processes
(Essay 3)

www.manaraa.com

5

methodology. We also give results of simulation experiments to compare various supply

chain configurations and to understand the effect of dynamic information sharing on the

performance of a supply chain. Thus, we show how to achieve supply chain

configurability by leveraging information sharing.

The second essay (Chapter 3) studies supply chain events systematically. A

formal approach based on Petri net technologies is developed to model and analyze

events. Moreover, seven basic patterns are used to capture modeling concepts that arise

commonly in supply chains. A detailed example is provided to show how to combine

these patterns to build a complete Petri net and analyze events using dependency graphs

and simulation. Dependency graphs can be used to analyze the various events and their

causes. This study shows that through this approach, supply chains are able to track the

causes of events and forecast events with precise time information, then making a

complex problem tractable. Simulation is, in addition, used to analyze various supply

chain performance metrics (e.g., fill rates, replenishment times, and lead times) under

different event resolution strategies. Using sensitivity analysis, we can show the effect of

changing parameter values of events on supply chain performance metrics. Therefore, we

can actually manage supply chain performance by managing supply chain events.

The third essay (Chapter 4) models and verifies supply chain processes based on

workflow technologies. Most workflow tools support structured workflows despite the

fact that unstructured workflows can be more expressive. The reason for this is that

unstructured workflows are more prone to errors. In this essay, we describe a taxonomy

that serves as a framework for analyzing unstructured workflows. The taxonomy

characterizes unstructured workflows in terms of two considerations: improper nesting

www.manaraa.com

6

and mismatched split-join pairs. Based on this taxonomy we categorize workflows that

are correct and others that are not. We also introduce a relaxed notion of correctness

called weak correctness, as opposed to the conventional notion of strict correctness.

Then, we develop a framework for analyzing unstructured workflows in terms of weak

correctness and give an algorithm for diagnosing workflows. The diagnosis algorithm

detects structural flaws and provides a detailed report giving causes for deadlocks and

other structural flaws. In addition, this algorithm gives suggestions on how to correct

those structural problems. The results of our research will be useful for researchers

investigating expressiveness and correctness issues in unstructured workflows.

Finally, Chapter 5 concludes this dissertation and summarizes the contributions.

Moreover, the implications of this essay to supply chain management practices are

discussed. The limitations of this thesis and our future work are also described in this

chapter.

www.manaraa.com

Chapter 2

Information Sharing in Supply Chains: Modeling, Configurations, and Results

Abstract: As supply chains evolve beyond the confines of individual organizations,
information sharing has become the Holy Grail in supply chain technology. Although the
value of information sharing is well recognized, there is little research on how to use it to
configure supply chains. This essay proposes a parameterized model to capture
information sharing in a supply chain. By changing the parameters of this model, we
actually adjust information sharing and create supply chain configurations.
Configurations are the means of responding to events or changes in supply chains in a
timely manner. A complete example is used to demonstrate this methodology. We also
perform simulation experiments to compare configurations and to understand the effect
of information sharing on supply chain performance.

2.1 Introduction

In recent years, the competitive business environment, marked by the acceleration

of globalization and increasing customer demand for ever higher level of service, has

forced companies to reduce costs while still providing high quality products and services

in ever greater variety and customizability. This challenge has compelled companies to

improve their supply chains, not only to optimize the internal logistic functions, but also

to build real-time collaboration across organizations. Supply chain collaboration can be

defined as a means by which all companies in a supply chain work together for mutual

gains and is characterized by information sharing [9, 26, 72]. Research has shown that

through information sharing, companies can establish strategic partnerships, develop

www.manaraa.com

8

supply chain plans jointly, coordinate their processes, and create efficiencies and cost

savings in the entire supply chain [37, 72].

Information sharing is also closely related to coordination. Coordination is

defined as managing dependencies between activities [62]. Malone et al. [63] give three

basic types of dependencies: flow, sharing, and fit. A supply chain involves all these three

types of dependencies. Information sharing plays a major role in improving supply chain

coordination. With flow dependencies, one supply chain activity produces resources, say

raw materials, which are used by another activity. Sharing schedules and status

information can make these activities better coordinated. Sharing dependencies occur

when multiple supply chain activities all use the same resource, such as common parts or

shipping capabilities. To manage sharing dependencies, the resource provider can share

its supply condition or it can have knowledge about the incoming demand from these

activities. Finally, multiple activities have a fit dependency if they collectively produce a

single resource. For example, collaborative design involves such dependencies. As a

supply chain practice, some manufacturers invite important suppliers to work on

collaborative designs in order to come up with solutions which match supply more

closely with demand [52, 74]. Typically, joint plans can be a coordination mechanism for

activities with this type of dependencies. As a result, information sharing leads to

improved supply chain coordination, better-aligned activities, and then streamlined

supply chain processes.

Also, it is obvious that supply chain visibility is not possible without information

sharing. Supply chain visibility means the ability to see from one end of a supply chain to

the other [23]. It implies a clear view of upstream and downstream inventory, demand

www.manaraa.com

9

and supply conditions, and schedules and status of different supply chain activities.

Supply chain visibility is viewed as an effective way to reduce uncertainties in supply

chains [50, 96]. In recent years, uncertainties have become a major concern in supply

chains. The direct consequences of uncertainties are increased inventory and information

distortion (such as poor demand forecasts). Moreover, the distortion propagates through a

supply chain and is amplified at each stage – the well-known bullwhip effect [48], which

has been identified as one of the biggest causes of inefficiencies in a supply chain.

Through information sharing, the demand information flows upstream from the points of

sale, while product availability information flows downstream in a systematic manner

[50, 96]. Moreover, Gosain et al. [30] showed that information sharing can increase

supply chain flexibility, the extent to which supply chain linkages are able adapt to

changing business conditions. In addition, information sharing can lead to new

knowledge creation in supply chains [61].

However, as the level of collaboration increases, shared information tends to be

richer and more diverse. A critical issue is how to manage information sharing so that

companies have enough visibility about the status of the whole supply chain, and yet the

volume of shared information should not be overwhelming [61]. More importantly,

shared information is "relevant enough and generated frequently enough so that partners

can make decisions that compensate for the inevitable unplanned occurrences" [26]. This

requires companies to adjust their information sharing (e.g., by relevancy, frequency,

accuracy, aggregation level, etc.) in a timely manner in response to various events or

exceptions in supply chains. Such an adjustment may result in changes of a supply chain

process, such as changes of constituent activities, changes of activity execution

www.manaraa.com

10

sequences, and new exception handling processes. Malhotra et al. [61] also pointed out

that supply chains need to architect inter-organizational processes to coordinate

information exchange. We view such changes as new supply chain configurations (or

simply configurations).

A supply chain configuration refers to a set of supply chain activities, the specific

pattern of inter-organizational linkages and the coordination mechanisms, especially

information sharing among those activities. In general, supply chain configurations

reflect a supply chain’s experience of reacting to events or changes and inferences can be

derived from them in response to similar events or changes in the future. In that sense,

supply chain configurations can be referred to as a part of "organizational memory" [30,

61]. More precisely, they are "memory" acquired by a supply chain.

In this essay, we approach this goal of designing supply chain configurations by

leveraging information sharing. There is growing interest in infrastructures and

frameworks for information sharing in supply chains [13, 36]. We use a parameterized

information sharing model to describe information sharing involved in an inter-

organizational process and show how to modify parameters to adjust information sharing

and then achieve new supply chain configurations. In particular, different configurations

can be evaluated by simulation in terms of supply chain performance. When events or

changes in information sharing needs are sensed, we find the appropriate configurations

or create new configurations by modifying inter-organizational processes or the

information sharing model in response to the changes. Figure 2-1 gives an overview of

this methodology. We will illustrate this methodology with a complete example and the

implementation of this methodology is also discussed.

www.manaraa.com

11

The remainder of this essay is organized as follows. The next section introduces

the concept of supply chain configurability in SCOR model and other related work. The

information sharing model is described in Section 2.3. In Section 2.4, our methodology

for information sharing is illustrated by a complete example. Section 2.5 describes and

analyzes the results of our simulation in detail. The implementation of this methodology

is briefly discussed in Section 2.6. Section 2.7 concludes the essay and briefly describes

our planned future work.

2.2 SCOR Model and Other Related Work

The concept of supply chain configurability is introduced in the Supply Chain

Operations Reference (SCOR) model [87]. SCOR is a business process reference model

that provides a framework for configuring supply chains to achieve a set of specific goals

in terms of performance metrics. SCOR contains four main levels of process details. It

consists of five core management processes at the top level (i.e., process type level): plan,

Figure 2-1: Overview of Supply Chain Configurations

Inter-organization
Processes

Information
Sharing Model

Supply Chain
Configurations

Events/
Changes

Adjust
parameters

Information
needs

Select

Modify

Modify Inter-organizational
processes

www.manaraa.com

12

source, make, deliver and return. The second level of SCOR, the configuration level (i.e.,

process category level) contains 30 core process categories that can be used to configure

a supply chain. At this level, organizations can configure their ideal or actual operations

by combining the generic SCOR process categories such as make-to-stock, make-to-

order, deliver stocked products, deliver made-to-order products, etc. The third SCOR

level (i.e., process element level) describes the processes in more detail using process

elements. It can be used to fine tune the operations of a company by associating

performance metrics for processes and process elements, and recording a set of best

practices for each process. Actual implementation of supply chain management practices

occurs at Level 4 (i.e., implementation level) of the SCOR model, but the details are not

specified.

According to the SCOR model, supply chain configurability means companies in

a supply chain are able to select proper core process categories, set up collaboration, and

coordinate their inter-organizational processes mainly by plans, when new trigger events

call for new configurations. For example, in a supply chain with three companies, a

supplier, a manufacturer, and a distributor, each company may select different process

categories as shown in Table 2-1 [12]. This configuration may need to be updated when

events, such as new product releases, new facility deployment, or channel design

changes, occur. For instance, if the distributor requires the manufacturer to do

customization (say, install customized software), the delivery process at the manufacturer

side is changed from D2 (Delivery make-to-order product) to D3 (Delivery engineer-to-

order product).

www.manaraa.com

13

Thus, the SCOR model emphasizes supply chain configurations in terms of

process categories. It allows companies to implement their operation strategies through

the configurations they choose for their supply chains at Level 2. In addition, the supply

chain processes are coordinated mainly by joint supply chain plans. Obviously, this

configuration is at a higher level than that at the detailed process element level, or even

the implementation level. Our goal is to address configuration issues at Levels 3 and 4.

Moreover, we analyze the needs of information sharing and use it to fine tune supply

chain processes in response to external or internal events.

Therefore, we extend the concept of supply chain configurability defined in the

SCOR model. We define supply chain configurability as: the extent to which a supply

chain can change process categories, fine tune process elements, dynamically adjust

process implementation, and coordinate inter-organizational processes, in response to

internal and external events, by leveraging information sharing between organizations.

Our definition not only includes configurability at a higher process category level,

but also emphasizes it at lower levels, including the process element and implementation

levels. Configurability at all the three levels is necessary for greater responsiveness and

flexibility of a supply chain. Because of the challenging business environment, supply

chains are constantly facing a variety of changes, both expected and unexpected.

Table 2-1: A Sample Supply Chain Configuration

Supplier Manufacturer Distributor

S1 (Source stocked product)
M1 (Make stocked product)
D1 (Deliver stocked product)

S2 (Source make-to-order (MTO)
product)
M2 (Make MTO product)
D2 (Deliver MTO product)

S1 (Source stocked product)
D3 (Deliver stocked product)

www.manaraa.com

14

Moreover, not every change has strategic implications that would lead to a new supply

chain configuration at the process category level. Most changes are short-term, have an

impact on tactical or operational decisions, and need a timely response. Rather, a new

configuration at the process category level is usually achieved in a relatively long time

and at a great cost, while on the contrary, a new configuration at the lower levels only

involves tuning specific process elements, adjusting implementation practices,

reconfiguring information sharing, and making other changes that can be accomplished

quickly and flexibly. Therefore, configurability at the lower levels provides supply chains

the capabilities of responding to short-term changes and handling external disruptions

smoothly, fostering agility [52].

Some other related work includes a conceptual sense-and-adapt framework for

dynamic adjustment with organizational memory [30]. Research shows that

organizational memory allows organizations to recognize types of adjustments needed in

response to events or changes [30, 61]. Still, we lack a detailed methodology for storing

and utilizing organizational memory for supply chains. In this essay, we develop such a

methodology based on information sharing. Haeckel [32] suggested a framework for

adaptive enterprises which emphasizes that a company needs to continuously reengineer

itself in response to customers’ changing needs. Also, a technical framework for sense-

and-respond business management is proposed in [42].

Next, we will introduce an information sharing model and show how to derive

various supply chain configurations from this model.

www.manaraa.com

15

2.3 Information Sharing Model

In this section, we describe a modeling approach for information sharing. It is

primarily based on events, conditions and information flows. But first we introduce

several information sharing structures and data objects.

2.3.1 Information Sharing Structures

Information sharing simply means sending data from one partner to another or

joint creation of data objects by two or more partners. Consequently, data objects are

exchanged between partners by means of information flows. In a supply chain consisting

of multiple partners, typically, information sharing can be conducted in three different

structures: sequential, reciprocal, and hub-and-spoke, as shown in Figure 2-2. More

sophisticated or hybrid structures can be obtained by combining these basic types.

(1) Sequential Information Sharing: In this structure, information is only shared between

two neighboring partners. For example, in Figure 2-2(a), Partner 1 and Partner 2 share

data item A, and Partners 2 and 3 share data item B. The information flows link the

1 2 3A B 4C
1 2 3A D

B

4E

C

F

hub

1

24

3

A

D B

C

(a) Sequential (b) Reciprocal (c) Hub-and-spoke

Figure 2-2: Information Sharing Structure

www.manaraa.com

16

processes of different companies together into a sequential chain. The traditional

arm’s length or transactional partnerships [72] can fit into this structure. For example,

retailers send replenishment orders to distributors and distributors send aggregated

replenishment orders to suppliers, but there is no direct information sharing between

retailers and suppliers. This structure is the simplest arrangement to implement. Each

pair of partners can establish their own protocols for exchange without the need for

any universal standard. They could rely on EDI or some other communication

mechanisms.

(2) Reciprocal Information Sharing: This is a more complex information sharing

structure. Each partner may communicate with several others. For example, as shown

in Figure 2-2(b), Partner 1 can share data A with Partner 2, B with Partner 3, and C

with Partner 4. There are multiple data objects shared in the whole supply chain. For

example, to reduce the bullwhip effect, retailers can share their actual usage with

wholesalers, distributors, manufacturers, and any other upstream partners. Another

example is that all partners in a supply chain can jointly develop supply chain plans to

optimize the performance of the whole supply chain. Difficulties of this structure lie

in different formats of shared data objects and possible inconsistencies between the

information of different partners. For example, in Figure 2-2 (b), if data objects B and

D are related, it is possible that B from Partner 1 and D from Partner 2 are

inconsistent. The next structure, hub-and-spoke, which uses a hub as an intermediate

to consolidate data objects, is able to deal with such inconsistencies.

(3) Hub-and-spoke Information Sharing: This arrangement is based on a central hub

which communicates with all partners, as shown in Figure 2-2(c). In general, an

www.manaraa.com

17

Internet-based e-hub in this architecture serves as a virtual marketplace, thus

facilitating a full range of business processes and interactions between trading

partners. The hub coordinates, stores, aggregates and maintains information about

each partner, makes decisions, and then communicates them to all partners. Similarly,

the hub has the ability to manage events and respond to them dynamically. For

example, Covisint [24] launched by DaimlerChrysler, Ford, General Motors and other

automakers, is based on the idea of such a centralized hub.

Information sharing structures determine information flows between partners.

Any change to data objects likely causes new information flows. For example, in

Figure 2-2(a), if data object A is generated by Partner 1, when A is changed, Partner 1

sends the update to Partner 2 as an information flow. Because of this change, Partner 2

may generate another information flow that sends the update of B to Partner 3. Therefore,

the dependencies between shared data objects decide the sequences of information flows.

In addition, these dependencies also determine the complexity of information flows. For

example, in a reciprocal structure, if all data objects are interrelated, the information

flows could be very complicated.

2.3.2 Information Sharing Objects

It has been recognized that supply chain partners need to share information in a

broad range of situations and areas, including both operational information such as

inventory status and shipment status, and strategic information such as market trends,

production capabilities and exceptions in order to respond to unanticipated changes in

www.manaraa.com

18

supply chains promptly and appropriately [30, 61]. However, in general, the types of data

objects shared between partners depend in large part on the nature of the relationship that

might range from a traditional arm’s-length relationship to one in which the partners are

tightly integrated. In an arm’s-length relationship, information is transmitted only for

executing transactions, while information sharing in tightly integrated collaborative

arrangements aims at improving supply chain synchronization and optimizing the whole

supply chain instead of an individual partner [12, 25, 72]. For example, single orders

placed by a buyer with a seller cause transactions to happen just between these two

partners, but the aggregated orders, if shared with any upstream partners, can increase

supply chain visibility. Therefore, it is important to determine what data objects are

shared (in terms of relevance, accuracy, completeness, etc), how they are shared (in terms

of frequency, timeliness, etc.), and the impact of the sharing of these data objects on

supply chain performance (in terms of feedback and evaluation). These requirements can

be generalized as the dimensions of information quality [69]. In general, the quality of

shared information can be a major concern in supply chain collaboration. We will

propose a model which can capture these dimensions explicitly.

Lee and Whang [49] summarize six types of shared information: inventory level,

sales data, order status for tracking/tracing, sales forecast, production schedule, and

other information such as performance metrics and capacity. Other types could be

information about the occurrence of events or changes in supply chain environment, joint

supply chain plans or business plans, and product information such as catalog and

product design which is used for collaborative design [58].

www.manaraa.com

19

Since shared data objects range from structured data like orders to unstructured

data like ad hoc product designs, standardization of data format is important. XML is

becoming a de facto standard for exchanging messages. Moreover, XML-based data

standards are preferable because of their flexibility [8]. Partners can define their own

XML data standards and conveniently convert data between XML and relational

databases. Later on, we will show how XML-based data templates can facilitate

information flows conveniently between partners.

2.3.3 Information Sharing Modeling

Next, we will introduce a modeling approach for information sharing. We extend

Event-Condition-Action (ECA) rules [65] to information sharing. ECA rules provide a

formalism for active database capabilities. An ECA rule specifies that when an event

occurs and if certain conditions hold, a specific action is executed. Actions are typically

the operations of databases, such as query, update, insertion, and deletion. In our context,

actions mean sending information flows. Moreover, an information flow can be

decomposed into a set of parameters, such as sender, receiver and shared data objects.

Therefore, information sharing between partners can be described in terms of the

following parameters: events, conditions, information flows (senders, receivers, data

objects, data templates, requested recipient actions, frequency, batch/real-time,

aggregation levels). The main advantage of this parameterized approach is that

information sharing can be leveraged by adjusting these parameters, as we will show in

the next section. Next, we describe different parameters with details.

www.manaraa.com

20

(1) Events

Events are signals for information flows to occur. Typically, there are three types

of primitive events. Composite events can be obtained by combining primitive events

using disjunction and sequence operators. Events can be assigned different priorities. In

addition, arguments may be attached to events. Three primitive events are described as

follows.

• Data change event. Changes may involve adding or updating shared data objects. For

example, if two partners have a joint supply chain plan, any partner who updates this

plan must notify the other by sending an information flow. In addition, receiving a

shared data object (e.g., a ship notice) is also an event. The receiver may respond to it

by sending an information flow (e.g., a goods receipt). The arguments for such events

can be shared data objects. For example, the event “ship notice received” can be

formulated as "Data_received('ship notice') ".

• Temporal events. Some information flows may be triggered by temporal events. For

example, a retailer may agree to send its weekly usage to a supplier at 5 PM on every

Friday. Further, temporal events can be absolute, relative, or periodic.

• Exceptions. Exceptions are unexpected supply chain events. A supply chain event is

"any individual outcome (or non-outcome) of a supply chain cycle, (sub) process,

activity, or task" [6]. In this essay, we will focus on exceptions related to supply chain

performance. Such an exception could also cause the adjustment of information

sharing between partners. For example, in a Vendor Managed Inventory (VMI)

arrangement, if sharing usage weekly leads to high forecast errors, the vendor may

www.manaraa.com

21

ask the retailer for real-time usage in order to improve its forecast precision.

Exception events normally receive higher priority than normal events.

(2) Conditions

Conditions are a collection of queries on shared data objects. If all shared data

objects are XML documents, those queries can be defined using XPATH or XQUERY

[95]. For example, the condition "inventory level of an item<3500" can be evaluated

using an XPATH statement like "Inventory/item[quantity<3500] ".

(3) Information Flows

When an event occurs and specific conditions are satisfied, an associated

information flow is sent out. Information flows can be further decomposed into a set of

parameters described as follows. In general, these parameters reflect the requirements for

the quality of shared information. Some parameters are mandatory and the others are

optional. Optional parameters describe some properties of information sharing. More

parameters pertaining to describe information flows can also be added when necessary.

Mandatory parameters:

• Sender and Receiver(s): are the communicating partners. In general, an information

flow can have more than one receiver. The sender and receiver parameters show the

structure of information sharing.

• Data objects (Data_Obj): contain the data to be shared. Shared data objects should be

relevant to a specific collaborative scenario. In addition, the data should be accurate

and complete. In a dynamic supply chain, information relevant to one situation may

www.manaraa.com

22

be irrelevant to another. Therefore, information sharing needs should be analyzed and

adjusted in a timely manner.

• Templates: give the formats of data objects, such as EDIFACT, XML and other data

standards. Since a variety of data objects is shared and those data objects may be in

different formats, to make receivers understand them, a possible solution is to

exchange their data templates along with the data. Therefore, in this model, data

templates are shared by senders and receivers as a parameter of information flows.

Also, the compatibility of templates should be considered. For example, XML is a

well-known standards and it could be a good option for providing data compatibility.

Optional parameters:

• Requested recipient action (Req_action): the actions taken by the recipient after the

flow is received.

• Frequency: the frequency of updating shared data objects, e.g. daily, weekly,

monthly, etc.

• Batch/Real-time: this is the mode in which the information is transferred. Along with

the frequency parameter, this parameter specifies the requirement for the timeliness of

shared information.

• Level of aggregation: the aggregation level may be transactional (each POS

transaction), per item or per brand etc. This parameter further specifies the relevance

requirement of shared information.

Information flows can be linked together by means of events and associated

conditions. When a flow occurs, it can generate an event indicating some changes to

shared data objects or prompt the recipient to take action on it, and perhaps another flow

www.manaraa.com

23

is then generated if the corresponding conditions are satisfied. Table 2-2 shows two

example information flows. The first flow is triggered by a temporal event. The second

flow is initiated when a data object is received and an associated condition holds at that

time. The details of these two flows will be described later. Next, we will describe our

methodology for generating an information sharing model and using this model to

achieve new supply chain configurations.

Table 2-2: Examples of Information Flows

1. sendUsage

Event: Friday, 5 pm
(Temporal event)

Information flow

 Sender: Customer

 Receiver: Vendor

 Data_Obj: Weekly Usage

 Template: EDI #852

 Req_Action: Propose order

 Batch/ Real-time: Batch

 Level of aggregation Aggregated by item

2. proposeOrder

Event: Weekly Usage
received

Condition: Item inventory <
3500

Information flow

 Sender: Vendor

 Receiver: Customer

 Data_Obj: Replenishment
order

 Template: EDI #855

 Req_Action: Accept/Modify order

 Batch/
 Real-time:

Real-time

www.manaraa.com

24

2.4 Configuring Supply Chain Processes

2.4.1 Methodology

In this section, we will discuss how to apply the parameterized approach to supply

chain processes and the kinds of problems that arise in doing so. First, we need to

describe information sharing between partners. Such sharing takes place by exchange of

data objects. Moreover, the data objects have dependencies between them. Thus,

typically, it is not very straightforward to capture information sharing structures and

dependencies between shared data objects directly. A better approach is to derive an

information sharing model from supply chain processes. A supply chain process contains

intra-organizational sub-processes that are internal to a particular partner, and inter-

organizational sub-processes that span multiple partners. Those inter-organizational

processes directly involve information sharing. Therefore, we focus on inter-

organizational supply chain processes. In general, our methodology is to describe an

inter-organizational process and capture it by an information sharing model, modify

parameters of this model to get different supply chain configurations, and then compare

the performance of these configurations.

To describe an inter-organizational process precisely, we use UML activity

diagrams [73]. UML is becoming a well-known standard for describing processes. For

example, it is a modeling standard for RosettaNet [78] to illustrate the PIP business

process flows. An activity diagram can define a process in terms of the control flows and

object flows among its constituent actions. A control flow describes the sequence in

which actions are executed in a process. An object flow specifies an object that is either

www.manaraa.com

25

responsible for initiating an action or used by an action. Both control flows and object

flows capture the dependencies between actions and reflect the need for coordination.

However, when a process crosses the confines of an organization, it is difficult for this

organization to impose direct constraints on its partners’ actions through control flows

unless a high level of collaboration has been established. Therefore, in general, object

flows serve as an indirect coordination mechanism. Thus, in this essay, we focus on

object flows. We model supply chain activities as actions, and data inputs or outputs of

supply chain activities as objects. In addition, we show how swimlanes can be used to

distinguish different partners. A detailed example will be provided later. With such an

activity diagram, we can immediately recognize information flows and shared data

objects involved in this process. Specifically, any object flow from one partner to another

can be considered as an information flow, and the object of this flow can be treated as a

shared data object. In addition, this diagram also shows the structure of information

sharing and also the dependencies of shared data objects. Therefore, using activity

diagrams, we can precisely describe the information sharing between partners and then

we are able to represent it using a parameterized information sharing model.

Next, we propose a general methodology that involves the following steps:

1. Describe/modify a process as a UML activity diagram and check if the UML

diagram is correct;

2. Extract cross-swimlane object flows from the UML diagram and save them as

parameterized information flows in a table. Adjust parameter values to get

different configurations;

www.manaraa.com

26

3. Check if the new configurations are correct (in terms of parameter values,

conditions, etc.);

4. Simulate different configurations and compare their performance;

5. Store the configurations in a standard form such as XML and exchange them with

business partners.

2.4.2 Example: Vendor Managed Inventory (Step 1)

Here, we turn to illustrating this methodology with a detailed example: Vendor

Managed Inventory (VMI). VMI is a collaborative arrangement typically between a

vendor and its customers, such as retailers. In this arrangement, the vendor takes over the

replenishment planning task for its partners. The main purpose is to reduce the safety

stock as a buffer on both the vendor side and the customer side because of demand and

supply uncertainties. Figure 2-3 shows that the main steps in VMI are as follows:

(1) Customers share their actual demand or usage with the vendor;

(2) The vendor generates the demand forecast and places a replenishment order for

customers accordingly;

(3) Customers review the replenishment order and confirm it;

(4) The vendor then sends a ship notice and this is followed by physical goods transfer;

(5) Customers acknowledge the actual receipt;

(6) There may also be need for exception handling through the Supply Chain Event

Management (SCEM) [59, 70] mechanism.

www.manaraa.com

27

In VMI, trading partners establish some metrics to evaluate the performance of

their collaboration such as fill rate, inventory turns, cost and other criteria. Therefore, it is

necessary to trigger a special exception handling process in case the expected

performance is not achieved. The term, SCEM is a subsystem for exception handling.

Ideally, SCEM must detect and report exception events, and analyze them in real-time.

However, exception handling is usually not a fully automated process and manual

intervention is often necessary. An exception in VMI might occur, for example, when the

fill rate drops below the required level.

Figure 2-4 shows the UML activity diagram for this VMI process. This UML

model offers many advantages. First, a UML diagram clearly shows trading partners and

their activities in the collaboration, since each swimlane represents a partner and its

activities are located in this swimlane. Second, a UML diagram can be used to identify

shared data objects. In Figure 2-4 , the objects associated with object flows which cross

Figure 2-3: Vendor Managed Inventory (VMI)

Vendor

Inventory

Customer

Database

Customer

…...

Actual Demand
/ Usage (1)

Replenishment
Order (2) Receipts

(5)Ship
Notice (4)

(SCEM) Supply
Chain Event
Management

(6)

Trigger

Trigger

Information Flow
Physical goods Flow

Confirmed
order (3)

……

www.manaraa.com

28

swimlanes are shared data objects. Third, a UML diagram can be used to determine

information flows, the dependencies between information flows, and the dependencies

between shared data objects. Finally, this diagram can be shared by multiple partners

easily, either as a drawing or after converting it into XML. In Figure 2-4, the seven

information flows are denoted by numbers in the sequence in which they occur.

Later, we will give a UML data model and show that the flows must conform to

this model.

2.4.3 Supply Chain Configurations (Step 2)

Next, we can extract the information flows from the UML activity diagram and

store them in a table. This step can be facilitated with automated tools. For example,

Customer Vendor

Gather
Actual Usage Forecast orders

SCEM

Deliver
Order

Actual
Usage

(1)

Replenishment
Order

[Proposed]

Confirm
Order

(2)

Replenishment
Order
[Final]

Yes

Receive
Goods

Goods
Receipts

Replenishment
Order

[Revised]

Ship Notes

Exceptions?

Good
quality_Val

Goods
Return Refund

Payment

Sample information flows:

(1) SendUsage:
Event : Friday, 5pm
 (Time event)
Action
From : Customer
To : Vendor
Data : Weekly Usage
Template : EDI #852
Frequency : Weekly
Batch/
Real-Time : Batch

(2) ProposeOrder:
Event : Weekly usage received
Condition : Inventory level<
 Reorder Point (ROP)
Action
From : Vendor
To : Customer
Data : Replenishment
 Order
Template : EDI #855
Req_action : Confirm order
Batch/
Real-Time : Real time

Notations:
Supply chain activities

Shared data objects

Decision

Object flow

Control flow

(4)

(3)No

(5)

Yes

No

(6)

(7)

Figure 2-4: Modeling VMI Process with UML Activity Diagram

www.manaraa.com

29

first, the pictorial UML diagram can be converted into a textual XML description using

conversion tools [17]. In particular, we have converted a UML model of a VMI supply

chain into XML using tools such as Visual UML [90] and Rational XDE [39]. Once the

process description is available in XML, it can be parsed to extract each individual flow

by writing an XML Stylesheet Transformations (XSLT) script and storing it in a

configuration table which maintains configuration information about a process.

Additional information, not captured by a UML diagram, such as template numbers for

each document exchange, and transfer mode, can be added to the rows of the table

pertaining to conditions and other parameter values of those information flows. In

addition, one could add the expected delay for each flow, so the actual throughput time

could be compared against the expected value. The table can also be queried for such

information. Thus, the configuration table gives the rules of interaction between partners,

and any changes made to it must be propagated to all the partners immediately

(preferably in real-time). It may be either replicated at each partner's location or stored

centrally in a hub. Table 2-3 shows a configuration table for information flows extracted

from the UML diagram of VMI. This table can capture the information sharing involved

in the VMI process, and is called configuration C1.

In a configuration table, every information flow is initiated by an event, and takes

place upon checking an (optional) associated condition; if the condition is true, then the

flow takes place. The information flow involves a sender, receiver(s), a data object(s)

and a requested action from the receiving partner. The data in row 1 of Table 2-3

corresponds to the sendUsage information flow. This flow occurs at 5 PM every Friday

(a temporal event) and there is no associated condition with it. Thus, the usage

www.manaraa.com

30

information is sent in a weekly usage form (i.e., a standard template) from the customer

to the vendor. The second row describes the action taken by the vendor on receiving the

usage. If the inventory value falls below the reorder point, then a new information flow

called proposeOrder is sent from the vendor to the customer. The customer either

accepts the proposed replenishment order (row 3), or rejects it and sends a modified order

to the vendor (row 4). The vendor then processes the order and generates a ship notice

(row 5) according to the shipping instructions. Finally, upon receipt of the product, the

customer inspects the quality of the product and sends an acknowledgment or a rejection

notice.

Action (Send Information Flow) Information
Flow

Event/
time Condition

Sender Receiver Data
Objects Template

Requested
Recipient

Action

Batch/
Real-
time

(1)
sendUsage

Monday, 5
PM – Customer Vendor Weekly

Usage #852 Propose
Order Batch

(2)
proposeOrder

Usage
Received

Inventory
<ROP

(Reorder
Point)

Vendor Customer Repl. Order
[Proposed] #855

Confirm
Order

(Accept or
Reject)

Batch

(3)
acceptOrder

Proposed
order

received
– Customer Vendor

Repl. Order
[No

change]
#855 Generate

Ship Notice Real-time

(4)
modifyOrder

Proposed
order

received &
Exception
(fill rate<ft)

– Customer Vendor/
SCEM

Repl. Order
[Revised] #855 Generate

Ship Notice Real-time

(5)
ShipNotice

Confirmed
Order

received

If Shipday
= Sat;

ship_gnd
else

ship_air

Vendor Shipper/
Customer Ship Notice #857 Receive

goods Real-time

(6)
GoodsReceipt

Goods
received

Quality_ val
>= q Customer Vendor

Goods
Receipts

ACK
#861 NONE Real-time

(7)
GoodsReject

Goods
received

Quality_ val
< q Customer Vendor Goods

Return #862 Refund Real-time

Table 2-3: Sample Data in Configuration Table for VMI (Configuration C1)

www.manaraa.com

31

In this framework, there are several avenues for configuration. First, changes

may be made to the frequencies of flows (daily instead of weekly), usage information

from multiple customer sites, etc. For example, say the “event/time” of the first row of

Table 2-3 is changed from "Friday, 5 PM" to "Daily, 5 PM". This change leads to a new

configuration, called configuration C2, shown in Table 2-4.

Further, configuration C2 not only causes more frequent flows, but also results in

a more responsive supply chain, since the vendor can track the customer’s inventory on a

daily basis (instead of weekly) and replenish the inventory more responsively. Moreover,

this change also allows management to make improvements by tuning other parameters.

For instance, since inventory is replenished more responsively, and the uncertainty in

inventory supply is also reduced, the safety stock can be consequently decreased in order

to improve the rate of inventory turns. This improvement is reflected in the decrease in

the reorder point in the condition of flow "proposeOrder" (in Table 2-3). Similarly,

responsive replenishment also results in a higher fill rate that is included as a parameter

in the event associated with the "modifyOrder" flow.

Action (Send Information Flow) Information
Flow

Event/
time Condition

Sender Receiver Data Objects Template

Requested
Recipient

Action

Batch/
Real-
time

(1)
sendUsage

Every
day, 5 PM Customer Vendor Daily Usage #852 Propose

Order real-time

Rows (2) – (7) of Table 2-3

Although real-time information sharing reduces forecast errors and improves fill

rate, it may increase costs because of more frequent order replenishment in a VMI

arrangement. A conjecture is that if the fill rate already reaches a satisfactory level, say

Table 2-4: Configuration for Real-Time Information Sharing (C2)

www.manaraa.com

32

95%, real-time information sharing may not be necessary; real-time information sharing

is required only when the fill rate is below a predefined level. For example, when the fill

rate is below 95%, we say an exception occurs. Therefore, we can create a new

configuration, C3 that mixes weekly with daily information sharing:

Configuration C3: IF Exception occurs, i.e., fill rate< ft, Configuration 2 ELSE

Configuration 1.

Still, many other adjustments may be made to the parameter values. In Table 2-3,

the reorder point (row 2) or the target level for the fill rate (row 4) may be changed to a

different value by the customer. The condition in row 5 allows the customer to specify

that the shipment mode depends on the ship day, and this condition can be configured

too. In addition, in row 6, a quality threshold can be specified and varied. Finally, the

formats of documents can also be easily changed by specifying a new template name, if,

say one partner modifies its documents. All of the above changes can be made "on-the-

fly, " while other flows remain unchanged.

For example, a VMI arrangement typically uses a static reorder point. However, if

the actual daily usage in this arrangement is affected by seasonal factors, a dynamic

reorder point may make inventory replenishment more responsive. Therefore, the

"condition" of the second row of Table 2-3 can be changed to "Inventory <ROP*sf,"

where sf is a seasonal factor. Seasonal factors can be calculated, for example, by dividing

the average usage of one season by the average of a whole year. More sophisticated

methods for computing seasonal factors can also be implemented. The change in the

condition leads to another configuration called configuration C4 (see Table 2-5). Note

www.manaraa.com

33

C4 assumes daily information sharing. Later on, we will compare it with C2 (see Table 2-

4) , which also assumes daily information sharing, but does not consider seasonality.

Another aspect of configurability relates to the process itself. This may involve

modifying an existing flow (i.e. change in a parameter value), adding a new flow, or

deleting an existing flow. For example, suppose the Order Delivery activity is outsourced

to a third-party shipper. The vendor shares the quantities and shipping profiles of

replenishment orders with the 3rd party and the 3rd party arranges shipment

automatically. This change will require a revised UML diagram such as Figure 2-5.

Following our method, the new UML diagram will eventually lead to a modified

configuration table. In this case, an additional flow, say, sendDeliveryNotes, from the

vendor to the 3rd party may be inserted above row 5 in Table 2-3 to inform the 3rd party

about the anticipated delivery for a new order.

Action (Send Information Flow) Information
Flow

Event/
time Condition

Sender Receiver Data Objects Template

Requested
Recipient

Action

Batch/
Real-
time

(1)
sendUsage

Everyday,
5 PM – Customer Vendor Daily Usage #852 Propose

Order Batch

(2)
proposeOrder

Usage
Received

Inventory <
ROP

(reorder
point) *sf
(seasonal

factor)

Vendor Customer Repl. Order
[Proposed] #855

Confirm
Order

(Accept or
Reject)

Batch

Rows (3) – (7) of Table 2-3

With the help of the UML model, we can determine the affected information

flows (modified, new added, or deleted). In Figure 2-5, the shaded part highlights the

changes: (1) a new swimlane is added for the 3rd party shipper, which is responsible for

Table 2-5: Configuration with Dynamic Reorder Point (C4)

www.manaraa.com

34

the activity Deliver Order; (2) there is a new flow, say sendDeliveryNotes, carrying

DeliveryNotes from the vendor to the 3rd party; and (3) subsequently, the existing flow

for ShipNotice should be modified since now it is sent from the 3rd party to the vendor

and the customer. Table 2-6 shows the flows of this new configuration called C5.

Parameters of configuration C5 can also be adjusted. For example, suppose the

vendor can make small deliveries by itself at a low cost. Only when the order quantity

reaches a high level, say 5000, 3rd party delivery is required. This new configuration can

be described as follows:

Configuration 6: IF (Order quantity>5000) C5 ELSE C1.

Customer Vendor

Gather
Actual Usage Forecast orders

SCEM

Prepare
delivery

Actual
Usage

(1)

Replenishment
Order

[Proposed]

Confirm
Order

(2)

Replenishment
Order
[Final]

Yes

Receive
Goods

Goods
Receipts

Replenishment
Order

[Revised]

Ship Notes

Exceptions?

Good
quality_Val

Goods
Return Refund

Payment

(4)

 (3)No

(6)

Yes

No

(7)

(8)

Shipper

Deliver
Order

Delivery
Notes

(5)

Figure 2-5: Modified VMI Process Shown in a Revised UML Diagram

www.manaraa.com

35

Action (Send Information Flow) Information
Flow

Event/
time Condition

Sender Receiver Data
Objects Template

Requested
Recipient

Action

Batch/
Real-
time

Rows (1)-(2) of Table 2-3

(3)
acceptOrder

Proposed
order
received

– Customer Vendor Repl. Order
[No change] #855

Generate
delivery
notes

Real-
time

(4)
modifyOrder

Proposed
order
received &
Exception
(fill rate<ft)

– Customer Vendor/
SCEM

Repl. Order
[Revised] #855

Generate
delivery
notes

Real-
time

(5) send-
Delivery-

notes

Confirmed
Order
received

If Shipday
= Sat;
ship_gnd
else
ship_air

Vendor 3rd Party
deliver

Delivery
notes #857 Ship notice Real-

time

(6)
ShipNotice

Delivery
notes
received

– 3rd party
deliver

Vendor /
Customer Ship Notice #857 Receive

goods
Real-
time

Rows (6) – (7) of Table 2-3

For the above six configurations, all information flows are initiated by shared

demand. Moreover, sharing information about the occurrences of important events,

especially exceptions, makes a supply chain agile and able to recover quickly from

sudden setbacks [52]. For example, after the earthquake in 1999 which caused serious

supply delay of PC components from Taiwan, with real-time shared information about

the extent of the suppliers’ problem, Dell quickly implemented a contingency plan which

steered demand away from products built from those components [52]. This contingency

plan can certainly be treated as a supply chain configuration. Similarly, in this VMI

arrangement, if the vendor experiences serious machine breakdowns, and, as a result,

replenishment orders are delayed, the vendor can notify the customer of the occurrences

of such events so that the customer can take backup plans, for instance, turning to

Table 2-6: Supply Chain Configuration with 3rd Party Delivery (C5)

www.manaraa.com

36

alternative vendors for replenishment. Therefore, we can have a new configuration C7 as

described in Table 2-7.

Action (Send Information Flow) Information
Flow

Event/
time Condition

Sender Receiver Data Objects Template

Requested
Recipient

Action

Batch/
Real-
time

(0)
Machine

breakdown
notified

 Customer Alt.
vendor

Rush Repl.
order #855 Confirm

Order
Real-
time

(1)
sendUsage

Monday, 5
PM – Customer Vendor Weekly

Usage #852 Propose
Order Batch

(2)
proposeOrder

Usage
Received

and without
machine

breakdown

Inventory
<ROP

(Reorder
Point)

Vendor Customer Repl. Order
[Proposed] #855

Confirm
Order

(Accept or
Reject)

Batch

Rows (3) – (7) of Table 2-3

2.4.4 Verification of Supply Chain Configurations (Step 3)

So far we have discussed examples of various configurations for information

flows through Table 2-3 to Table 2-7. Configurations can be stored in a standard form

such as relational database tables or XML files, and exchanged with business partners.

Moreover, it is important that these configuration tables be constructed according to a

data model. Such a data model is shown in Figure 2-6. This data model can be used to

verify that each configuration is correct. In particular, the flow dependencies must be

well-maintained, the syntax of the conditions must be correct, and other values in the

table such as template ids must be valid. For example, an information flow, say X,

generates an event, say "data object A received", and this event triggers another flow, say

Y. Thus, this induces a dependency between flows X and Y. If the configurations are

Table 2-7: Configuration with Shared Information about Event Occurrences (C7)

www.manaraa.com

37

stored in a relational database, we can easily verify this type of dependency using an SQL

statement as follows:

SELECT Flow.* FROM Flow, Event, Data

WHERE Flow.Event=Event.Event_ID AND Event.Data=Data.Data_ID AND

Flow.sender NOT IN (SELECT Receiver FROM Flow WHERE Data=Event.Data)

If this query returns a non-empty answer, none of the flows in this answer can be

initiated because their prerequisite events never happened, leading to a broken sequence

of information flows; otherwise, the sequence is well-maintained. Similarly, if

configurations are stored in XML, one can use the XQuery language [95] to verify that

the dependencies are correct. With regard to the conditions in supply chain

Event

+ Event_ID
+ Name
+ Type
+ Data
+ Expression

Flow

+ Flow_ID
+ Event
+ Condition
+ Sender
+ Receiver
+ Data
+ Template
+ Req_action
+ Mode

- triggered_by

*

Partner

+ Partner_ID
+ Address
+ Name
+ URL

- sent_by/received_by

1

Data

+ Data_ID
+ Name
+ Description

- transmit

1

Template

+ Template_ID
+ Description
+ Location

- use

1Action

+ Action_ID
+ Name
+ Partner

- request

0..1

Condition

+ Condition_ID
+ Description
+ Expression

- satisfy

0..1

Configuration

+ Configuration_ID
+ Trigger_event
+ Condition
+ Flow_ID

1..*

- triggered_by

0..1

- satisfy
0..1

- perform

1

1..*

- Belong to

1

Figure 2-6: Data Model of Configurations

www.manaraa.com

38

configurations, for now, we assume a simple, intuitive language for describing

conditions, and omit the details of the syntax for it.

2.5 Simulation (Step 4)

We saw above that the information sharing model can lead to different

configurations of a supply chain process. Next, we need to evaluate each configuration

and determine which configuration is most suitable under some particular circumstance.

A simulation prototype of this model is developed to simulate each configuration and

measure its performance.

To evaluate a configuration, we need to select appropriate performance metrics

for it. For example, for the VMI process, the appropriate performance metrics could be

fill rate, inventory turns, and cost. In SCOR model, there are five categories of

performance metrics: reliability, responsiveness, flexibility, cost, and assets. Each process

element is associated with specific performance metrics. In general, we can refer to the

SCOR toolkit [87] to select proper performance metrics for a process.

A preliminary prototype was built with the CSIM 19 simulation tool [68]. This

prototype contains the following modules: Configuration Setting, Data Initialization,

Flow Processing Engine, Data Processing, and Performance Calculation. The

Configuration Setting module contains the configuration tables to be used in the

simulation. In the Data Initialization module, process-specific data, such as order size

and lead time, are stored. The Flow Processing Engine controls the flows based on the

configuration setting. This module can be designed with reference to the architecture of

www.manaraa.com

39

ECA applications [65]. The Data Processing module will generate required shared data

objects based on templates and evaluate the conditions in flows. The Performance

Calculation module is used to calculate the performance metrics of interest. In addition,

this module can generate exceptions if a particular performance metric is below its

predefined level. Figure 2-7 shows the design of this prototype. Among these modules,

the flow processing engine can be used in any scenarios, while others may need some

customization. This is a generic prototype which can be used to evaluate any

configuration. Note that a particular configuration may also be evaluated using other

simulation software. For example, the configurations of this VMI arrangement can also

be simulated using Arena Simulation Software [44]. Angulo et al. [10] also used Arena to

simulate information sharing in a VMI arrangement. Certainly, Arena has limitation in

evaluating supply chain configurations. It may be difficult to process complicated events

using Arena, since Arena is not based on ECA rules. We tested our configurations using

both the prototype and Arena.

Data Processing

Data Initialization

Performance
Calculation

Configuration
Setting

Events,
flows, and
conditions

Process
specific
data

Outgoing
shared data
/Condition
evaluation results

Incoming
shared data

Performance-
related data

Exceptions

Flow Processing
engine

Figure 2-7: Design of Simulation Prototype

www.manaraa.com

40

We first simulate and compare configurations C1, C2 and C3, and then we test the

performance differences between configurations C2 and C4 when seasonal factors are

introduced to the daily usage. Finally, if the vendor experiences machine breakdowns,

we test configuration C7 where the information about the occurrences of those events is

shared, and compare it with C2.

2.5.1 Simulation Setting

The initial setting of the simulated supply chain process is shown in Table 2-8.

We assume that there is only one product involved in this VMI arrangement. The daily

usage at the customer site follows a Gamma distribution with α=1.25 and β=400 (i.e,

Gamma(1.25, 400), mean=αβ=500, variance αβ2=200000). Research shows that if the

lead time for an item and the demand per unit of time are both stochastic, Gamma

distribution is a good choice for the resulting demand during the lead time [43, 88]. In

addition, Gamma distribution has non-negative values. Moreover, since demand

variability [92] may have impact on information sharing, we will also test the

performance of configurations when demand variability changes. Demand variability is

measured by the coefficient of variation (CV), the standard deviation of daily demand

divided by the mean. Figure 2-8 shows the probability density function of the daily

demand which follows different Gamma distributions. These distributions have the same

mean, i.e. 500, but different standard deviation and therefore different demand variability.

Obviously, from this figure we can see that when α is large, Gamma distribution closely

approximates a normal distribution.

www.manaraa.com

41

Simulation setting Values
Daily usage Gamma distribution, Gamma(400, 1.25)

Reorder point 3500
Replenishment order size 6000

Lead time of replenishment orders 5 days

The lead time for replenishment order is 5 days. A (ROP, Q) inventory policy is

used, i.e., whenever the vendor knows that the inventory at the customer site is below

reorder point (ROP), a replenishment order with order size Q is proposed. We assume

ROP=3500 (i.e., actual usage during the lead time + 2 days’ safety stock = 500 x 5 + 2 x

500 = 3500) and Q=6000. Table 2-9 shows Configuration 1 (C1) with specific parameter

values and delay times.

Table 2-8: Simulation Setting

0 500 1000 1500
0

1

2

3

4

5

6

7

8

9
x 10

-3

Gamma(1,500),
CV=1.00

Gamma(1.25,400),
CV=0.89

Gamma(100,5),
CV=0.10

Gamma(10,50),
CV=0.32

Gamma(4,125),
CV=0.5

Daily Demand

Pr
ob

ab
ilit

y

Figure 2-8: Probability Density Function of Gamma Distributions

www.manaraa.com

42

To evaluate a configuration, appropriate performance metrics are chosen [20].

These are average flow time (or inventory turns), order fill rate and annual total cost.

Average flow time is the time in days it takes to consume the average inventory (i.e.,

average inventory / average daily sales) and accordingly, inventory turns = the number of

days in a year / average flow time. We assume 250 business days in a year. Order fill rate

is defined as the percentage of demand fulfilled by the customer from available

inventory. Initially, the required fill rate is set to 90%.

Action (Send Information Flow) Information
Flow

Event/
time Condition

Sender Receiver Data Objects

Delay time
(days)

sendUsage Monday, 5 PM Customer Vendor Weekly Usage 0.5

proposeOrder Usage Received Inventory <
3500 (ROP) Vendor Customer

Repl. Order
[Proposed]
(qty = 6000)

0.5

acceptOrder Proposed order
received Customer Vendor Repl. Order [No

change] 0.5

modifyOrder
Proposed order
received and fill
rate < 90%

 Customer Vendor/
SCEM

Repl. Order
[Revised qty =
qty*1.1]

0.5

ShipNotice Confirmed Order
received Vendor Shipper Ship Notice 0.5

GoodsReceipt Goods received Customer Vendor Goods Receipts
ACK 3.0

In addition, we calculate all costs incurred in the whole supply chain. To evaluate

average cost, we make a number of assumptions. These assumptions do not affect the

estimates of the other two performance indexes, order fill rate and average flow time. A

simple but realistic cost structure is chosen based on a sale price of each item at $1.00 per

unit at the customer side (the other costs can be considered to be proportional to this sales

price). Partial fulfillment is allowed, whereas back orders are counted as lost orders.

Table 2-9: Flow Table for Configuration (C1) with Specific Parameters

www.manaraa.com

43

Average shortage cost per lost item is 20% of the sales price, which reflects the cost of

lost potential sales opportunities. In addition, average carrying cost per item per year is

20% of the sales price, which reflects the cost of storing and handling the product.

Average transportation cost per item is $0.10. Average manufacturing cost per item from

the vendor is $0.20, but it is 50% higher if the item is purchased from an alternative

vendor. Setup cost for every replenishment order is $100 incurred by order handling and

setting up a production run. When a replenishment order is proposed, if the accumulated

order fill rate is below 90%, a penalty of $1000 is applied because the performance fails

to reach the required level (see "modifyOrder" row in Table 2-9). This penalty reflects the

sales loss as a result of customers switching to competitive brands since their needs

cannot be satisfied. Table 2-10 shows the cost structure. The total cost per year is

calculated as follows:

Total cost per year = setup cost of replenishment orders+ manufacturing cost +

transportation cost + carrying cost + shortage cost + penalty

Angulo et al. [10] used a similar cost structure to test the impact of information

accuracy and information delay on supply chain performance in a VMI arrangement. Of

course, different supply chain scenarios may have different cost structures. To further

Table 2-10: Cost Structure of VMI Arrangement

Cost components Price($)
Average carrying cost per item per year 0.20
Average transportation cost per item 0.10
Setup cost for every replenishment order 100
Shortage cost per lost item 0.20
Average manufacturing cost per item 0.20
Average manufacturing cost per item (alternative sourcing) 0.30
Penalty if fill rate < 90% on receiving a proposed order 1000

www.manaraa.com

44

demonstrate the impact of the cost structure on configuration selection, we will provide

sensitivity analysis for the key cost components later.

2.5.2 Simulation 1 – Comparing Weekly Sharing, Daily Sharing, and Mixed Sharing

The following three configurations are simulated:

C1: Weekly information sharing (see Table 2-9)

C2: Daily information sharing (in Table 2-9, change the event/time of the first

flow to "everyday, 5 PM")

C3: Dynamic information sharing (Suppose the required fill rate is 95%): IF

Exception occurs (i.e., fill rate < 95%) THEN C2 ELSE C1

We simulated these three configurations for 15 replications each for a period of

1000 days. Table 2-11 shows the numbers of each type of flows and the total number of

flows in different configurations during the simulation. Table 2-12 shows the

performance results of each configuration.

First, the fill rate of C1 is the lowest among the three configurations. Compared

with C1, C2 has a much higher fill rate, close to 100%. Real-time information sharing

contributes to this high fill rate. However, in C2, the average flow time is also increased

by 1.5 days. In other words, on average, more inventory is kept in the customer’s

warehouse. Obviously, more frequent replenishment orders lead to this increase of

average flow time. As shown in Table 2-11, approximately 21 replenishment orders are

issued in C2, compared to only 19 orders in C1. Therefore, one can see that the fill rate

increases, but more replenishment orders are placed and a larger inventory is kept.

www.manaraa.com

45

Number of flows (Per Year)
C1 (Weekly sharing) C2 (Daily sharing) C3 (Mixed sharing) Information Flows

Mean Std. dev. Mean Std. dev. Mean Std. dev.

SendUsage (Weekly) 50 0 - - 23.69 6.18

SendUsage (Daily) - - 250 0 131.57 30.9

ProposeOrder 18.98 0.68 20.60 0.54 19.82 0.51

AcceptOrder 16.45 4.74 20.58 0.54 19.52 0.67

ModifyOrder 2.53 4.19 0.02 0.07 0.30 0.47

ShipNotice 23.17 0.69 20.60 0.54 19.82 0.51

GoodsReceipt 23.17 0.69 20.60 0.54 19.82 0.51

Total number of flows 156.85 2.06 332.40 2.16 230.45 23.11

Fill rate (%) Average flow time (days)
Configuration

Mean Std. deviation Mean Std. deviation

C1 (Weekly sharing) 92.28 1.39 6.54 0.26
C2 (Daily sharing) 98.49 0.61 8.07 0.16
C3 (Mixed sharing) 95.01 0.26 7.34 0.18

Although there is naturally a trade-off between fill rate and inventory turns, it

would be interesting to explore whether it can be finetuned to achieve a satisfactory fill

rate while keeping the inventory turns as high as possible. We believe information

sharing is the answer here, and test this belief in configuration C3. Recall that in C3,

weekly sharing and daily sharing are mixed. Daily sharing is used when the fill rate drops

below 95% (if the required order fill rate is 95%, an exception is triggered whenever the

order fill rate is below this level). In other words, information sharing is adjusted

dynamically when exceptions occur. The last column of Table 2-11 gives the numbers of

Table 2-11: Number of Each Type of Simulated Flow

Table 2-12: Performance Comparison of C1, C2 and C3

www.manaraa.com

46

each type of flow for C3, while Table 2-12 compares the fill rate and average flow time

for C1, C2 and C3. As Table 2-12 shows, C3 realizes not only a satisfactory fill rate,

95%, but also less average flow time, about 0.73 day less than that in C2. In C3,

information is not always shared in real time, but is shared whenever necessary or in

"quasi-real time" [26].

Table 2-13 compares the total cost per year incurred by each configuration. The

calculation of total cost is based on the cost structure in Table 2-10. As Table 2-13 shows,

the total cost of C2 is lower than that of C1 because C2 has much higher fill rate than C1,

and, as a result, C2 incurs significantly lower shortage cost and fewer penalties than C1.

This saving can balance the extra setup, manufacturing, shipping and carrying costs

resulting from more inventory required by C2. However, although the shortage cost of C3

is higher than that of C2, C3 still incurs slightly lower total cost than C2. Because C3

keeps less inventory than C2, the cost reduction in setup, manufacturing, shipping and

carrying inventory can effectively compensate for the extra shortage cost and penalties

resulting from lower order fill rate in C3 (3.48% lower than that in C2).

Cost Components ($) Total Cost Per Year ($)
Configuration

Setup Manufacturing Shipping Carrying Shortage Penalty Mean Std. Dev.

C1 (Weekly Sharing) 1,898 23,084 11,542 654 1,947 2,533 41,659 4,236

C2 (Daily Sharing) 2,060 24,722 12,361 807 382 17 40,349 1,056

C3 (Mixed Sharing) 1,981 23,816 11,908 736 1,254 300 39,997 1,039

Configuration C3 shows that the desired supply chain performance (order fill rate,

cost etc.) can also be achieved through flexible information sharing. The frequency of

Table 2-13: Cost Comparison of C1, C2 and C3

www.manaraa.com

47

information sharing should be determined in a dynamic environment by the performance

requirements of supply chain processes. Moreover, the simulation also shows that

information sharing can be a tool for adjusting supply chain processes dynamically in

response to exceptions in supply chains.

2.5.3 Simulation 2 – Comparing Static vs. Dynamic Reorder Point

Next, we simulate the impact of a dynamic reorder point on supply chain

performance. Christiaanse [22] hypothesized that a dynamic reorder point may be used to

reduce the intensity of the bullwhip effect. Here we verify this conjecture through

simulation and show how a dynamic reorder point can be used to deal with seasonality in

demand. Suppose the actual daily usage has a seasonal feature and a period of, say 1 year,

has four seasons. Each season is of equal length but the mean of the daily usage in each

season varies. Table 2-14 shows the distributions used to generate the daily usage in each

season.

Season Distribution of the actual daily usage
1 Gamma(1.25, 250)
2 Gamma(1.25, 350)
3 Gamma(1.25, 450)
4 Gamma(1.25, 550)

Next, we investigate the impact of a reorder point on supply chain performance. The

following two configurations are compared:

C2: Daily information sharing with a static reorder point, i.e., 3500 (from Table 2-9)

Table 2-14: Gamma(α, β) Distributions of the Actual Usage in Four Seasons

www.manaraa.com

48

C4: Daily information sharing with a dynamic reorder point, i.e., 3500*sf , where sf is a

seasonality factor (see Table 2-5)

To get the value of sf above, we compute the moving average over a small period,

say 10 days, and divide this average by 5000. Of course, other more complex

calculations for sf are also possible. Thus, this seasonal factor changes over time. Next,

we can show that even with such a rough estimation of the seasonal factor, the order fill

rate of the supply chain improves.

Table 2-15 shows the performance indexes of C2 and C4. When seasonal daily

usage is introduced, the fill rate for C2 is about 4% lower than that without seasonal

factors (see Table 2-12). In terms of fill rate, C4 clearly outperforms C2, but the average

flow time also increases by 1 day. This simulation showed that a dynamic reorder point

can be an effective way to counter fluctuation of the actual usage and raise order fill rate.

Fill rate (%) Average flow time
(days)

Replenishment orders
(per year) Configurations

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
C2 (static reorder point) 94.82 0.56 7.65 0.18 22.13 0.49

C4 (dynamic reorder point) 96.69 0.54 8.67 0.21 22.57 0.56

In addition, using the cost structure in Table 2-10, we find the total cost per year

only slightly increases when a dynamic reorder point is introduced. Table 2-16 compares

the cost incurred by C2 and C4. Since C4 keeps one more day inventory than C2, the

setup, manufacturing, shipping and carrying costs incurred by C4 are higher than those in

C2. As a result, the total cost of C4 is higher than that of C2. For a cost-sensitive supply

Table 2-15: Performance Comparison of C2 and C4 with Seasonal Actual Usage

www.manaraa.com

49

chain, C4 does not outperform C2. However, if the shortage cost per item increases to,

say $0.4, C4 will incur lower total cost and therefore become a better choice than C2.

Cost Components ($) Total Cost Per Year ($)
Configuration

Setup Manufacturing Shipping Carrying Shortage Penalty Mean Std. Dev.
C2(Static

Reorder Point) 2,213 26,560 13,280 765 1,454 0 44,273 1,038

C2 (Dynamic
Reorder Point) 2,257 27,088 13,544 867 928 67 44,750 1,104

2.5.4 Simulation 3 – Sharing Information about Event Occurrences

Next, we simulate the impact of sharing information about the occurrence of

machine breakdown events on supply chain performance. Fox et al. [27] showed that

sharing information about unexpected disruptions in supply chains can enhance the

coordination of supply chain partners and reduce the negative consequences of those

disruptions.

Suppose that the machines at the vendor side break down sometimes. During the

breakdown, all replenishment orders are delayed until the problem is fixed. The up time

of these machines follows an exponential distribution with a mean of 90 days, i.e.

EXP(90), and the down time follows EXP(5). With configuration C2, the vendor does not

notify the customer of the occurrences of breakdown events, so replenishment orders

could be delayed. With configuration C7, the customer is notified when breakdown

events occur, and then it turns to alternative vendors for replenishment. The

manufacturing cost of alternative vendors is 50% higher than that of the main vendor.

The lead time of alternative sourcing follows a uniform distribution between 3 and 5

Table 2-16: Cost Comparison of C2 and C4

www.manaraa.com

50

days, i.e., U(3,5). After the machines are fixed, the customer resumes the replenishment

activities with the VMI vendor as before. The following two configurations are

compared:

C2: Daily usage is shared, but machine breakdown information is not shared; no

alternative sourcing.

C7: Daily usage and breakdown information is shared; alternative sourcing is used during

breakdowns (see Table 2-7).

Next, we can show that with sharing of breakdown event information, the

performance of the supply chain improves in terms of order fill rate and total cost.

Table 2-17 shows order fill rate and average flow time of C2 and C7. With occasional

machine breakdowns, the fill rate of C2 is 5% lower than that without breakdown events

(see Table 2-12). Moreover, compared with C2, C7 has only slightly increased average

flow time.

Replenishment orders (Per Year)
Fill rate (%) Average flow

time (days) VMI Vendor Alt. Sourcing Configurations

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean std. dev.

C2 (Without sharing
breakdown information) 93.84 2.05 6.98 0.25 19.35 0.48 - -

C7 (Sharing breakdown
information) 95.92 0.81 7.15 0.17 18.25 0.78 1.78 0.74

In terms of fill rate, C7 clearly outperforms C2. Also, as Table 2-18 shows, the

total cost per year decreases when the customer is notified of the machine breakdowns

and alternative sourcing is introduced. Although an extra cost is incurred by the

alternative sourcing, C7 leads to lower shortage cost and fewer penalties than C2.

Table 2-17: Performance Comparison of C2 and C7

www.manaraa.com

51

Cost Components ($) Total Cost Per Year ($)
Configuration

Setup Manufacturing Alt. Vendor Shipping Carrying Shortage Penalty Mean Std. Dev.
C2 (Without

sharing
breakdown
information)

1,935 23,456 -- 11,728 698 1,557 1,967 41,341 3,278

C7 (Sharing
breakdown
information)

2,003 21,926 3,210 12,033 715 1,031 217 41,135 1,411

2.5.5 Configuration Sensitivity Analysis

From Table 2-13, we can see some cost components varies significantly among

these three configurations. Next we do the analysis of configuration sensitivity to these

components: carrying cost, shortage cost and the penalty. Finally, we will analyze the

sensitivity of configurations to demand variability.

2.5.5.1 Sensitivity to Carrying Cost and Shortage Cost

Figure 2-9(a) shows the sensitivity analysis of carrying cost. If we change the

carrying cost per item per year from $0.10 to $0.40 (but keep other cost components

unchanged), we can see C3 always outperforms the other two. This result can be

explained by Table 2-13, which clearly shows that the carrying cost only amounts to 2%

of the total cost. The change on carrying cost makes no significant impact on the total

cost of the supply chain.

On the other hand, if the shortage cost per item varies from $0.00 to $0.85, the

configuration with the lowest total cost moves from C3 to C2 as shown in Figure 2-9 (b).

Table 2-18: Cost Comparison of C2 and C7

www.manaraa.com

52

Clearly, when the shortage cost per item increases, the lower the order fill rate, the faster

the total cost per year increases. For example, when shortage cost per item is $0.50, the

shortage cost per year amounts to 11% of the total cost in C1, but only around 2% of the

total cost in C2.

Figure 2-10 shows which configuration can achieve the lowest average cost when

both carrying cost and shortage cost vary. Obviously, when shortage cost per item

(a) Sensitivity Analysis – Carrying Cost

38000

40000

42000

44000

0 0.1 0.2 0.3 0.4 0.5

Carrying Cost Per Item Per Year

Tt
oa

l C
os

t P
er

 Y
ea

r

C1
C2
C3

(b) Sensitivity Analysis – Shortage Cost

36000

41000

46000

0 0.2 0.4 0.6 0.8 1

Shortage Cost Per Item

To
ta

l C
os

t P
er

 Y
ea

r

C1
C2
C3

Figure 2-9: Sensitivity Analysis of Cost

www.manaraa.com

53

increases, C2 will achieve the lowest total cost. Moreover, the cost difference among

these three configurations increases as shortage cost per item increases.

2.5.5.2 Sensitivity to Penalty

Figure 2-11 shows the sensitivity of configurations to the penalty imposed when

order fill rate is below 90% upon receiving a proposed replenishment order. This figure

shows that when the penalty is very small (less than $300), C1 incurs the lowest total

cost. When the penalty increases, C3 has the lowest total cost. When the penalty is very

high (more than 2300), C2 incurs the lowest cost since its order fill rate rarely falls below

90%. In general, the penalty represents the cost of losing potential market share because

Shortage cost per item Carrying price
per item per year

To
ta

l c
os

t p
er

 y
ea

r

Figure 2-10: Total Cost Sensitivity to Shortage and Carrying Costs

www.manaraa.com

54

of failures in order fulfillment. In a market with many competitive products, such a cost

could be very high. Therefore, real-time information sharing is especially important, as

this analysis result shows.

Note that in our simulation experiments, we use accumulated order fill rate. If the

order fill rate is calculated on a monthly basis, we find that in C1, the order fill rate falls

below 90% more frequently (around 150 days out of 1000 days). The punishment for a

low order fill rate could be very heavy. In addition, in our experiments, a penalty is

imposed only when order fill rate drops below 90% upon the retailer receiving a proposed

replenishment order. In general, a supply chain can design an appropriate penalty

mechanism based on its competitiveness in the market. This mechanism will have impact

on selecting the most suitable configurations, as this simulation experiment shows.

Sensitivity Analysis – Penalty

35000

40000

45000

50000

0 1000 2000 3000 4000
Penalty Per Exception ($)

To
ta

l C
os

t P
er

 Y
ea

r (
$)

C1
C2
C3

Figure 2-11: Sensitivity to Penalty

www.manaraa.com

55

2.5.5.3 Sensitivity to Demand Variability

Waller et al. [92] mentioned that daily demand variability varies widely in

different industries. For example, the demand variability is in general lower (around

0.10~0.30) in consumer products and significant higher (perhaps greater than 1.00) in

electronics. Waller also showed that when the variability increases, more inventory is

required to ensure a certain level of order fill rate. Next, we test the impact of demand

variability on the selection of supply chain configurations.

Table 2-19 shows five daily demand distributions, which have the same mean but

different standard deviation. Therefore, the demand variability ranges from high to low.

The probability density functions of these five distributions are shown in Figure 2-8. The

performance of configurations C1, C2 and C3 under different demand distribution is

shown in Figure 2-12.

As Figure 2-12 (a) shows, when the demand variability increases, the order fill

rate in each configuration drops because the variation in demand leads to more lost

orders. However, order fill rate in C3 only changes slightly. Recall that C3 is a mix of

weekly and daily information sharing and the portion of weekly or daily information

sharing is adjusted by the order fill rate. When the demand variability increases, the

portion of weekly information sharing is reduced but that of daily information sharing is

Table 2-19: Distributions and Variability of Daily Demand

Distribution Gamma(100, 5) Gamma(10, 50) Gamma (4, 125) Gamma(1.25, 400) Gamma (1, 500)
Mean 500 500 500 500 500

Standard dev. 50 158 250 447 500
Demand Variability 0.10 0.32 0.50 0.89 1.00

www.manaraa.com

56

increased. In other words, for C3, when the variability is low, information is mainly

shared on a weekly basis and this is frequent enough to maintain 95% order fill rate.

However, when the demand variability is as high as 1.00, C2 (daily sharing), but not C1

(weekly sharing), is still able to achieve a 95% order fill rate. Therefore, when CV = 1.0,

C3 adjusts to almost daily information sharing. Thus, the order fill rate of C3 rarely

changes because of such a self adjustment.

Figure 2-12 (b) shows that when demand variability increases, the inventory turns

of C1 slightly decrease, because it becomes more likely that the order fill rate drops

below 90% and supply order size is increased by 10% (see Table 2-9) at this time (more

average inventory will be kept). Inventory turns of C2 barely change because the order

fill rate is always above 90%. However, as the variability increases, inventory turns of C3

decrease because as information is shared more frequently (almost daily), inventory is

replenished more frequently, and as a result, more inventory is kept.

Figure 2-12 (c) compares the total cost incurred by each of these three

configurations. Clearly, when the demand variability is low, weekly information sharing

(C1) can achieve a high order fill rate (above 95%), and it requires relatively lower level

inventory than daily information sharing (C2). As a result, C1 incurs lower total cost than

C2. When the demand variability is high, daily information sharing is required to ensure a

high order fill rate in order to keep the cost low. Since C3 is a combination of C1 and C2,

it approximates to C1 when the variability is low but moves close to C2 when the

variability is high. Therefore, C3 can balance the shortage cost and the cost of

replenishing inventory and always achieve the lowest cost, as the demand variability

changes.

www.manaraa.com

57

(a) Order Fill Rate – Demand Variability

0.9

0.925

0.95

0.975

1

0 0.2 0.4 0.6 0.8 1 1.2

Demand Variability

O
rd

er
 F

ill
 R

at
e

C1
C2
C3

(b)Inventory Turns – Demand Variability

30

35

40

0 0.3 0.6 0.9 1.2

Demand Variability

In
ve

nt
or

y
Tu

rn
s

C1
C2
C3

(c) Total Cost – Demand Variability

38000

40500

43000

45500

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Demand Variability

To
ta

l C
os

t P
er

 Y
ea

r (
$)

C1
C2
C3

Figure 2-12: Sensitivity of Configurations to Demand Variability

www.manaraa.com

58

The sensitivity analysis further suggests that in order to achieve the lowest cost in

a supply chain, the configurations should be carefully evaluated. Changes in supply chain

environment could make a previously optimal configuration no longer optimal. For

example, if the shortage cost per item is increased to above $0.50 (say, because of

shortage, ultimate customers lose goodwill and potential sales are lost), clearly, a higher

fill rate is preferred. In addition, the changes in penalty mechanisms (e.g., for

unsatisfactory order fill rate) and demand variability can also affect the performance of a

configuration. In general, changes in supply chains can result in different information

sharing needs and suitable configurations should be used accordingly. Therefore, it is

evident that effective sharing of information is possible only through a systematic

approach to modeling information sharing, simulating the effect of information sharing,

and directly associating information sharing with the performance metrics of supply

chain processes. This is exactly the goal of our research.

2.5.6 Discussion of Supply Chain Configurations

So far, we demonstrated how to analyze information sharing and design supply

chain configurations. We also showed that configurations should be evaluated in terms of

supply chain performance. We should point out that the simulation here is used to

demonstrate how to evaluate different configurations and select the most suitable one that

can satisfy the information sharing needs for a particular situation. It is not to show that

one configuration is absolutely better than others. Using different parameters or inventory

policies, we may get different results. A supply chain should test the performance of

www.manaraa.com

59

configurations with parameters pertaining to it. In addition, the simulation here is to

demonstrate that each configuration should be evaluated in some way. One may also use

some other approaches to evaluate configurations. For example, for this VMI

arrangement, optimization techniques of inventory models [55] may be another

evaluation approach.

Note that in our VMI example, although most shared information, such as demand

and order status, is related to operational processes, this does not mean that this

methodology is only applicable to processes at the operational level. Actually, this

example also illustrates how information sharing can affect decisions at tactical or

strategic level. For example, when machine breakdowns happen, the vendor may or may

not share information about the occurrence of the events. Sharing such information could

bring alternative vendors to this supply chain and thus more competition. However,

without sharing such information, exceptions, such as unsatisfactory fill rate, could

happen and then impinge on the effectiveness of this collaborative arrangement.

Certainly, this dilemma is more than an operational decision. Moreover, another

advantage of this methodology is that it can show the detailed impact of information

sharing on processes on different levels and also the potential benefits (e.g., improved fill

rate and cost reductions). This clear view can encourage supply chain partners to share

information willingly or reduce resistance to necessary information sharing. In addition,

all configurations are shared among supply chain partners and per se are new knowledge

or "organizational memory" created from information sharing [61].

www.manaraa.com

60

2.6 Implementation

The methodology presented in this essay can be implemented to support dynamic

information sharing. For example, if the various supply chain partners agree to set up a

hub to coordinate supply chain processes (see Figure 2-2 (c) in Section 2.3.1), this

methodology can be used to develop the architecture of such a hub as follows. First, the

hub stores all configurations, data templates and data, and up-to-date performance

metrics. Second, an information flow engine based on ECA rules [65] is the core of this

hub and it is used to facilitate information flows exchanged between partners. We have

discussed a prototype of this engine in Section 2.5. In addition, this hub can directly

communicate with each partner’s enterprise information systems to process shared data

objects. Finally, to build "sense-and-respond" capabilities [32] in a supply chain, an event

engine [59] can be included to detect, analyze, and respond to events in real time. Fed

with events from an information flow engine, the event engine can filter and process

primitive events and generate alerts or notifications for only the significant ones. Based

on these events the supply chain configuration may be modified suitably. A preliminary

architecture of the hub is shown in Figure 2-13. The details of this architecture need to be

further developed.

www.manaraa.com

61

2.7 Conclusion and Future Work

Information sharing plays a key role in supply chain collaboration, which requires

timely information about suppliers, manufacturing, distribution, retailing, and demand. In

this essay, we introduced a methodology which leverages information sharing to

configure supply chains based on well-known technologies including UML, XML and

ECA rules. This methodology consists of several steps, many of which can be automated

(or partially automated) using existing tools. Through this methodology, we are able to

analyze information sharing, create supply chain configurations, evaluate configurations

and use them suitably in response to supply chain changes.

We showed that supply chain changes (e.g., changes in cost structures, market

competitiveness and demand variability etc.) and exceptions can lead to different

information sharing requirements and then suitable configurations should be selected to

meet the requirements. The results of the simulation show that a well-designed

Supply chain
partner(s)

Supply chain
partner(s)

Information flow
engine

Event
engine

Change S. C.
configurations

Information flows Information flows

S.C.
configuration
store

Shared data
objects

Figure 2-13: Architecture of an Information Sharing and Event Management Hub

www.manaraa.com

62

configuration can lead to improved performance of a supply chain. In addition, all

configurations are shared among supply chain partners and, per se, create new knowledge

or "organizational memory" (Malhotra et al. 2005).

We expect our future work to extend this methodology to the strategic level in

designing supply chains. For example, we would like to investigate what strategic

configurations can enable a supply chain to successfully switch from make-to-stock

(MTS) operations to make-to-order (MTO) mode, which matches supply more closely to

demand. Moreover, we plan to focus on the detailed procedure for verifying ECA rules in

supply chain configurations and on also the implementation of our methodology.

www.manaraa.com

Chapter 3

A Formal Modeling Approach for Supply Chain Event Management

Abstract: As supply chains become more dynamic, there is a need for a sense-and-
respond capability to react to events in a timely manner. In this essay, we propose Petri
nets extended with time and color as a formalism for event management. We describe
seven basic event patterns that capture common modeling concepts in supply chains and
also show how to use the patterns as building blocks to model a complete supply chain.
Based on Petri net models, events and their causes are analyzed using dependency
graphs. We also use simulation to analyze supply chain performance under different
event resolution strategies. In addition, we perform sensitivity analysis to study the effect
of changing event parameters on performance indicators. We show that by modeling
timing and causality issues accurately it is possible to improve supply chain performance.

3.1 Introduction

The pressures of global competition and the need for extensive inter-

organizational collaboration are forcing companies to streamline their supply chains and

make them agile, flexible and responsive. Consequently, a supply chain must be able to

handle large numbers of events, both expected and unexpected. The unexpected events,

also called exceptions, typically arise because there is usually a gap between supply chain

planning and execution [11]. Supply chain planning sets a target that can be achieved

based on a given set of constraints at a given time. In a dynamic supply chain

environment, the constraints are always changing, so exceptions or deviations from plans

occur almost regularly. Examples of exceptions are inaccurate forecast, product out-of-

stock, shipment delay, etc., and they are costly. Moreover, events tend to propagate in

collaborative supply chains across partners, resulting in the well-known bullwhip effect

www.manaraa.com

64

[48]. Such risks have given rise to a new research area of Supply Chain Event

Management (SCEM). The goal of SCEM is to introduce a control mechanism for

managing events, in particular, exceptions, and responding to them in a timely manner.

A supply chain event is "any individual outcome (or non-outcome) of a supply

chain cycle, (sub) process, activity, or task" [6]. Events are correlated with each other to

form a "cloud" of events; some events have significant consequences and therefore they

must be monitored closely, while others are of lesser importance. The critical problem

lies in extracting the significant events and responding to them in real-time. Doing so

requires an ability to monitor them proactively, simulate them to help decision-making,

and use them to control and measure business processes [70, 85]. In this essay, we

present a methodology that uses a Petri net approach to formulating supply chain event

rules and analyzing the cause-effect relationships between events.

Petri nets are a powerful modeling technique for problems involving coordination

in a variety of domains. A variant of Petri-nets called time Petri-nets allows us to model

time intervals also. Considering the dynamic characteristic of supply chain events, such

Petri nets are useful for describing the time constraints associated with events. Examples

of time constraints are: "event e1 follows event e2 after time T " and "N occurrences of

event e1 within time T lead to event e2". These temporal constraints are important for

proper correlation between events; otherwise, the management could be unable to

anticipate events or track causes of events. To deal with variety in case data (e.g., order

ids, order quantities, rush orders versus normal orders, etc.) we extend the model with

"token colors", i.e., we use time colored Petri-nets.

www.manaraa.com

65

Using time colored Petri-nets we can model event patterns common in Supply

Chain Management (SCM). These patterns can be composed as will be demonstrated

using a Vendor Managed Inventory (VMI) example. To demonstrate that the Petri-net

basis allows for different types of analysis we used CPN Tools [75] to simulate different

scenarios for the VMI example. The mapping onto CPN Tools allows us to investigate

the performance of event resolution strategies. In addition, dependency graphs are used to

analyze cause-and-effect relationships of events.

There are a variety of SCEM systems from companies, such as SAP, i2, and

Manugistics [85]. Most systems mainly perform monitoring and provide "early warning"

rather than analyzing events and suggesting solutions [11, 16, 64, 66, 70, 85]. Actually,

the more powerful part of SCEM would be the capability of "aggregating data from key

business systems at a high level and presenting the ramifications of exceptions and the

possibilities of solutions" [64]. Therefore, this research can contribute to the research area

of SCEM in three ways. First, this work introduces a formal and general approach to

modeling events and event rules, and the approach provides flexibility in associating

occurrence counts and temporal constraints with events, avoiding the customization

problem which often poses as an obstacle to the implementation of the existing SCEM

systems [16]. Second, this approach allows excellent event analysis, including event

forecasting with time information and causality analysis, which provide real-time

visibility about the implications of events and traceability to the root causes for events.

Third, it offers a way to track supply chain performance metrics by events, and shows

how through simulation decision makers can compare different strategy alternatives or

fine-tune a solution in terms of key performance indicators.

www.manaraa.com

66

This essay is structured as follows. Section 3.2 gives an overview of events, event

rules, event aggregation, event causality, and our notion of a dynamic supply chain.

Section 3 describes Petri nets briefly. Section 3.4 introduces event semantics and seven

event patterns or building blocks of event rules. It shows that a complete event Petri net

can be constructed by using these blocks. Section 3.5 presents a detailed example to

illustrate how to use Petri nets to examine event causality and forecast subsequent events.

Section 3.6 gives simulation results of the example to illustrate the practical value of our

approach. Section 3.7 describes related work and compares our approach with others,

while Section 3.8 concludes the essay with a brief description of future work.

3.2 Overview of Supply Chain Events

When supply chain partners are integrated, events at one partner may have impact

on other partners, and their responses to these events may cause a storm of events.

Therefore, causality analysis is the key to controlling such a storm. Our analysis begins

with events and event rules.

In general, events in an organization occur in the following three types: (1) task

status related events, such as the end of a task or the beginning of a task, which are

usually regular; (2) events produced by a task, such as events "stock partially available"

and "out of stock", which are the possible results of the "check availability" task; and, (3)

external events which may arrive from other supply chain partners or from the external

environment, e.g., new order arrival, inbound shipment delay, import policy change etc.

www.manaraa.com

67

These types of events are captured directly during a process, and called simple or

primitive (as opposed to composite) events. Composite events are derived from simple

events by event aggregation. A composite event is deduced when a group of simple

events occurs [60]. A group of simple events may together reveal potential problems. For

example, if a product is out of stock once in a month, perhaps it is quite normal and an

alarm should not be generated, but if this stock out happens two times in a week, then it

may reflect some underlying problems in the supply chain and this should be recognized

by generating an event. As another example, a group of stock trading events, related by

accounts, timing and other data, taken together, may constitute a violation of a policy or a

regulation [60]. Event aggregation is a mechanism to filter simple events and extract

meaningful information from them by setting up alarms in advance.

Thus, event aggregation extracts value from a management point of view out of

trivial and unorganized simple events. In order to achieve this objective, it is important to

recognize event patterns and set up aggregation rules. Besides aggregation rules,

business rules must also be considered. Business rules capture the causal relationships

between events. For example, if an order is delayed for more than time T, then it is

automatically cancelled. Therefore, a rule is needed to express that the event "order

delayed by T " is a cause of event "order cancelled".

Moreover, a supply chain is viewed as a series of synchronous and asynchronous

interactions among trading partners. Usually, when an event, particularly an exception,

happens, the trading partner responsible for it may react to this event within a reasonable

resolution time to resolve it. For instance, suppose an order is delayed for delivery. If

the delay is within an acceptable range specified by the customer, the customer is notified

www.manaraa.com

68

of the delay and the order is processed. However, if the delay exceeds the acceptable

tolerance (also called expiration time), the order should be automatically cancelled, and

hence, the event "order delay" is not relevant in this case. On the other hand, a series of

new actions arise because of this new event, such as canceling the order, removing any

reservations made, refunding any payments, etc. Therefore, to model events and event

rules precisely, our modeling approach should be able to capture such temporal

constraints correctly. In our analysis, each event is associated with two time values:

resolution time and expiration time. In most cases, event resolution takes an

unpredictable amount of time because of complexities of various business situations and

it is more realistic to set up a resolution time interval. We will show how to capture the

dynamic aspect of events in the later sections.

3.3 Petri Net Preliminaries

A Petri net is a directed graph consisting of two kinds of nodes called places and

transitions. In general, places are drawn as circles and transitions as boxes or bars.

Directed arcs connect transitions and places either from a transition to a place or from a

place to a transition. Arcs are labeled with positive integers as their weight (the default

weight is 1). Places may contain tokens. In Figure 3-1, one token is represented by a

black dot in place p1. A marking is denoted by a vector M, where its pth element M(p) is

the number of tokens in place p. The firing rules of Petri nets are [71]:

(1) A transition t is enabled if each input place of t contains at least w(p,t) tokens, where

w(p,t) is the weight of the arc from p to t. (By default, w(p,t) is 1.)

www.manaraa.com

69

(2) The firing of an enabled transition t removes w(p,t) tokens from each input place p of

t, and adds w(t,p) tokens to each output place p of t, where w(t,p) is the weight on the

arc from t to p.

There is another special type of arc called an inhibitor arc with a small circle

rather than arrow at the end. An inhibitor from a place to a transition prohibits the

transition from being enabled, and thus firing, if there is a token in the place. An example

of an inhibitor arc is given later.

In this essay, we use Time Colored Petri Nets (TCPN), i.e., Petri nets extended

with time intervals and token values. First of all, the above classical Petri nets can be

extended by associating a time interval [I1, I2] with each transition, where I1 (I2) is the

minimum (maximum) time the transition must wait for before firing after it is enabled.

Such a Petri net is known as Time Petri net (TPN) [91]. If I1 = I2, we just associate one

time value with each transition1, while if the interval is not specified, then I1 = I2 = 0.

Analysis techniques for TPNs are discussed in [14, 91]. Second, tokens can be tagged

with data values (or a color) to create a colored Petri net (CPN) [40, 41]. For example, we

use tokens of different colors (or values) for each order or product. For a given place, all

tokens must be from one color set.

1 The Time Petri Nets discussed in this essay should not be confused with Timed Petri Nets. A Petri net is
called Timed Petri net [91, 99] if each transition is associated with a fixed time instead of a time interval.
The two types of Petri nets have very different semantics. As discussed in [14], Time Petri Nets are more
general than Timed Petri Nets.

www.manaraa.com

70

In Figure 3-1, Q, R and S represent different color sets. q, r, and s are variables,

such that q∈Q, r∈R, and s∈S. In a TCPN the arcs are also labeled with colors. For

example, in Figure 3-1, two tokens colored "q" are consumed if transition t1 fires. The

fired transition t1 will put one token colored "r" in place p2. Moreover, if there are two

tokens colored "q" continuously existing in place p1, transition t1 will fire no later than

time 4. If there is still a token colored "q" remaining in place p1 after time 4 (relative to

the arrival of this token), transition t2 will fire shortly after time 4 (denoted as 4+∆, where

∆ is a very short time period, close to 0) and before or at time 8.

3.4 Event Formulation and Event Patterns

3.4.1 Event Semantics

Having given a preliminary introduction to Petri nets, now we turn to developing

the techniques to formulate event rules as Petri net structures. In most cases, events are

not only the triggers but also consequences of supply chain tasks, i.e. one event causes

another. Therefore, it is quite natural to model events as places that represent pre-

conditions or post-conditions of transitions. Thus, events and places will be used

interchangeably while modeling events. Moreover, time Petri nets offer an attractive

p2 t1

[0, 4]

p1
Q

R

t2

q
p3

S
s

2`q
r

[4+Δ, 8]

Figure 3-1: Colored Time Petri Net

www.manaraa.com

71

choice for modeling the dynamic aspect in supply chains. To make such models, we first

formulate events and event rules as follows:

Event rule R: e1 (n1x1, I0) 1, 2[] I I→ e2(x2), where

e1 : input event class

n1 : number of event instances (for simplicity, we just say events), i.e., number

of tokens (by default, n1 = 1).

xi : data value of event i for i = 1,2. In other words, the color of tokens, xi ∈

color set Xi.

I0 : expiration time of e1.

→ : “imply” or “lead to”, which establishes a cause-effect relationship between

the left side and right side of the rule.

1, 2[] I I : an optional time interval which corresponds to the event resolution time. In

order not to make the problem trivial, we require I2 < I0. If this interval is not

specified, we assume I1 = I2 = 0.

e2 : output event class. For every rule, only one instance of e2 is generated

because it is not necessary to repeat supply chain events.

This event rule shows the semantics of event e1 succinctly. Suppose e1 continues

to arrive at a system. If the number of its occurrences reaches a threshold, say n1, and

these events persist in the system long enough, event rule R can be triggered during

interval [I1, I2], and e2 is then generated. I0 is the expiration time of e1. If rule R does not

fire within the [I1, I2] interval, then e1 expires. After e2 occurs, e1 may normally be

www.manaraa.com

72

consumed by rule R. However, if e1 is required by another rule, then a token should be

returned to e1. Hence, two representations are possible for event rules:

Representation 1 (consumption case - e1 is consumed): This case can be

modeled as a Petri net shown in Figure 3-2. This representation is useful when an event is

not required by multiple rules.

Representation 2 (non-consumption case - e1 is not consumed): Event e1 is not

consumed because it may be required by another rule. Nevertheless, event e2 must not be

generated multiple times from these occurrences of e1. This case can be accurately

modeled as a Petri net as shown in Figure 3-3.

When comparing Figure 3-2 and Figure 3-3, one can note several differences.

First of all, the representation chosen in Figure 3-3 abstracts from color sets, and focuses

on timing issues and causalities. Second, events are not consumed. Third, we consider the

situation where n1 events need to occur to trigger another event. Since event e1 is not

 Order

delayed
Customer

notification
Q Q

e1 t1

[0, T1]

e2
q q

Figure 3-2: Petri Net of Example 1 Showing a Rule R

e'1 t2

[I1, I2]

e2

t3

I0

e"1

expired e"1

n1`x1
t1

x1

x1 n1`x1
x1

x2

n1`x1

x1

e1
x1

Figure 3-3: Petri Net Representation for Non-Consumption Case

www.manaraa.com

73

consumed by rule R, we need a special mechanism to prevent event e2 from being

generated repeatedly. Therefore, as Figure 3-3 shows, Place e1 is first transformed into

two places, e'1 and e"1, through a transition t1. Tokens in e"1 are consumed if transition t2

fires, while n1 x1 tokens (denoted as n1`x1) are brought back to place e'12. (Note that n1

events are needed to enable transition t2.) Therefore, after the first firing, although there

are n1x1 tokens in place e'1, transition t2 cannot fire, and thus, at most one e2 event is

generated (with respect to n1x1 tokens). If transition t2 does not fire (because of

insufficient tokens in e'1), e"1 expires at the end of expiration time by firing transition t3.

The notion of expiration time will be discussed further in the next section.

These two representations are employed in our patterns in the next section.

3.4.2 Event Patterns to Model Supply Chain Rules

Next we will develop several patterns for constructing complex temporal event

relationships and also give equivalent logical expressions for these patterns. In general,

three logic connectives, OR (∨), AND (∧), Negation (¬), can be used on either the left

or the right side of an event rule. Since modeling of time is crucial in understanding the

behavior of our Petri net models, we call these patterns temporal event patterns.

We will show later that these patterns can be used as building blocks to create

event networks in supply chains. We will demonstrate that these patterns allow us to

2 This will create cycles in this Petri net model. In general, we allow cycles in Petri net models. However,
Petri net models should not create "cycles" in event dependencies (i.e., event A leads to event B and B leads
back to A). Such "cycles" in event dependencies will cause unnecessary repetition of events. In this essay,
all Petri net models are carefully designed to avoid such "cycles". Still, an approach to verifying Petri net
models is necessary and this remains as part of our future work.

www.manaraa.com

74

capture sophisticated relationships involving multiple event instances, event expiration

times and resolution times. Thus, this modeling approach can be used to model large

varieties of typical supply chain events. We will also illustrate the patterns by examples.

Pattern 1 (simple cause-result pattern): A cause-result pattern is the most basic

pattern for describing event relationships. It shows that event e1 can cause event e2

within a time period [I1, I2]. More formally, this relationship is expressed as: e1 (x1)

1 2[,]I I→ e2 (x2).

Example 1: If an order is delayed (e1), contact customer (e2) before time T1, i.e.,

e1 (q) [0, 1]T→ e2 (q) (Note: q is order numbers).

Figure 3-2 (in the previous section) shows the time Petri net model of this

example. Note that order numbers can be considered as a color set here, i.e., each order

has a different color. We use Q to denote this color set, and q is a variable for any order

in Q. Transition t1 must fire within time T1 after it is enabled. Transition t1 corresponds

to the action “notify customer”.

Pattern 2 (Repeat_cause-one_effect pattern): This pattern concerns the case

where multiple occurrences of one event within a certain time period cause another single

event to occur. Formally, this relationship can be described as:

e1 (n1x1, I0) 1 2[,]I I→ e2 (x2), where n1 occurrences of event e1 for instance x1 cause event

e2 to occur. There are numerous situations where this pattern is useful.

Example 2: If product s is out of stock (e1) more than once within period T2,

contact the supply chain manager (e2). (Note, s is the product ID). Formally, this rule can

be represented as e1 (2s, T2) [0 ,]∆→ e2 (s).

www.manaraa.com

75

This example introduces the notion of expiration time of events. If an event is not

consumed (in this case, event e1) by a rule, it may expire after a time interval. The Petri

net model in Figure 3-4 represents the time constraints pertaining to these events.

Whenever tokens arrive at place e'1 and e"1 (as a result of event e1) transition t2 and t3 are

enabled, but they cannot fire immediately. When there are two tokens arriving in place e'1

and e"1, transition t1 fires immediately and produces the event e2, "Notify SC Manager".

After transition t1 fires, two tokens are returned to place e'1, because event e'1 may be

used by other rules. However, tokens in place e"1 are consumed, so transition t1 cannot

fire repeatedly. Since transition firing takes no time, t3 is still continuously enabled. If a

token stays in place e'1 for time T2 after its arrival, t3 fires and event e1 expires. Thus, it

is possible that event e'1 expires without t1 firing, if there is only one token arriving

within interval T2. Simultaneously, transition t2 fires so that e"1 expires.

Pattern 3 (Inclusive choice): The need for this construct arises when multiple,

alternative events can occur based on temporal conditions. Formally, this rule can be

expressed as:

e0 (n0x0, I00) {[11, 12[] I I→ e1 (x1)] ∨ [21, 22[] I I→ e2 (x2)] ∨ ... ∨ [1, 2[]m mI I→ em (xm)]}

e'1 t1

e2

T2

t2

T2 e"1

2`s
2`s

Expired e"1

t3

s Expired e1

s

2`s

s

Notify SC
Manager

t0

s
s

s

s

Out-of-
stock
e1

Figure 3-4: Petri Net of Example 2 (Pattern 2)

www.manaraa.com

76

Thus, in general, an event e0 could produce one of many events ranging from e1 to

em based on the time intervals associated with these events. In general, these time

intervals could overlap; however, by ensuring the intervals are non-overlapping it would

be possible to make a deterministic choice based on time. The following example

illustrates this pattern.

Example 3: If an order, with lead time L2, has not been shipped (i.e., not

consumed by some other rule) within time L2 after it is confirmed (e0), the order is

treated as delayed (e1) (but e0 is not consumed yet); however, if an order is delayed by

more than time T3, it is treated as undeliverable and cancelled (e2). (Perhaps the customer

does not want it if the delay is more than T3. So e0 is consumed at this time.) This

example can be formulated as:

[2, 2 3] 2 3
0 1 2 (, 2 3 2) { [()] [()] }L L T L Te q L T e q e q+ + +∆+ + ∆ ∨→ →

This event rule can be represented as a Petri net model in Figure 3-5. As the Petri

net model shows, when an order is confirmed, a token is placed in place e′0 and e″0 as

well. Transitions t1, t2, t3, and t4 are enabled but do not fire at that moment. If this token

is consumed by the shipment transition t5 before time L2 (relative to its arrival),

transitions t1, t3, and t4 are disabled, but transition t2 will fire at time L2+T3+2∆ after

the token arrival. Otherwise, if during the time interval [L2, L2+T3] this token remains

in place e′0, transition t1 will fire. After transition t1 fires, this token is immediately

brought back to e′0 because some other rules (like t4) may use it later. If there is still a

token in e′0 after L2+T3, transition t4 fires and produces event "order cancelled". Thus,

the token in e′0 is consumed. In general, if this rule is triggered, it can produce two

possible results: order delayed and cancelled, or only order delayed, depending upon the

www.manaraa.com

77

temporal relationships. One can see this rule actually has complex semantics, yet its Petri

net model can precisely describe such temporal relationships. Note that in Figure 3-5,

transition t3 never fires and it can be removed. We keep this transition in the figure for

consistency with event semantics.

Pattern 4 (1 of N causes – single result Pattern): A result can have multiple

alternative (combination of one or more) causes. Hence, there is a need for this pattern,

and its formal logical expression is as follows:

{[e1(n1x1,I10) 11, 12[] I I→]∨ [e2(n2x2,I20) 21, 22[] I I→]∨ ...∨ [em(nmxm, Im0) 1, 2[]m mI I→]}

e0(x0)

In this expression, the cause of event e0 may be any one of e1, e2, …, em.

Typically, this structure could be used to indicate the cause for an event. Figure 3-6 is the

Petri net presentation of this structure, if every source event e1, e2, …, em is consumed by

this rule. Note that the notion of expiration times can be applied to this pattern. For

simplicity, the expiration times and expiration transitions are not shown in Figure 3-6.

For example, if transition t1 does not fire (because of insufficient tokens), e1 will expire

e"0 expired

Order
cancelled

Order
delayed

e1 t1

[L2, L2+T3]
e'0

Q Q

t4

q

 L2+T3 +∆
e2

Q
q

q

q

q

e"0 t2
L2+T3 +2∆

t0
q

q
q

q

e0

Order
confirmed

Q

Q

q

t5 e4 e3 Inventory ready

Order
shipped

q

q Q

t3

L2+T3 +2∆

e0 expired

q

q

q

Figure 3-5: Petri Net Model of an Order Process (Pattern 3)

www.manaraa.com

78

at time I10 by firing an expiration transition. The same standard simplification is applied

to the next three patterns. A specific example of Pattern 4 is given as below.

Example 4: When a rush replenishment order is rejected (e1), or delayed (e2) by

more than time T4 (if the delay is less than T4, the delayed time can be compensated by

faster shipment), contact alternative vendors (e0). Logical form:

0
4

 2
)5 ,0[

 1]})([])({[eqeqe TT →∨ →

As the Petri net model in Figure 3-7 shows, in this example, if an order is rejected

by a vendor, an alternative vendor must be contacted in a short interval, say [0, T5]. If the

order is delayed, a token is put into place e2 immediately. How long this token remains in

place e2 is exactly the order delay time. If the order is delayed for time T4, then transition

t2 has been continuously enabled for the same time, so transition t2 fires immediately.

The fired transition means that, in order to replenish inventory in time, alternative

sourcing is required. If the delay does not exceed time T4 and then the inventory is ready,

a fast shipment (e4) is used to compensate for this delay. Therefore, through these

examples, we see that colored time Petri nets not only present the transformation of

events, but also simulate the underlying business activities. The latter advantage cannot

be achieved by its logical formulations.

e1 t1

e0

X0

X1

tm

x0

em

Xm

x0

n1`x1

nm`xm

[I11 , I12]

[Im1 , Im2]

Figure 3-6: Petri Net for 1 of N Causes – Single Result (Pattern 4)

www.manaraa.com

79

Pattern 5 (1 cause – N results Pattern): This pattern recognizes that a cause

may have multiple consequences and captures all concurrent consequences of a particular

event. Logically, this is expressed as:

e0 (n0x0, I00) 01, 02[] I I→ {e1 (x1) ∧ e2 (x2) ∧ ... ∧ em (xm) }

In this expression, n0 occurrences of event e0 generate m different events

concurrently. Figure 3-8 shows the Petri net representation of this rule. As Figure 3-8

shows, the m events are represented as output places of transition t1, which is enabled by

n0 occurrences of input event e0. Transition t1 fires within an interval [I01, I02] after n0

tokens are placed in e0. In this case, this Petri net representation shows a 1 cause – N

results pattern.

Example 5: If an order is delayed (e0), notify customer (e1) and reschedule the

shipment (e2) immediately, i.e. [0, 6]
0 1 2 () [() ()]Te q e q e q∧→ .

Figure 3-9 is the Petri net model of Example 5. If T6 approaches 0, t1 fires

instantaneously. This simple example illustrates that this structure can be used to present

the concurrent events that originate from the same cause.

e2

e0

t2

Order rejected

Contact alternative
vendors

Q

Q q q e1

Order delayed

Q

q

t1

qT4

[0, T5]

e3 t3

Q
q

e4

q
q Inventory

ready
Fast
shipment

Figure 3-7: Petri Net of Example 4 (Pattern 4)

www.manaraa.com

80

Pattern 6 (N causes – 1 result Pattern): This pattern is the reverse of the above

pattern, and it is used to model the concurrent causes of a particular event. The following

formulation shows that, there are m preconditions, e1, e2, …, em, which occur

simultaneously to arrive at event e0:

{e1 (n1x1, I10) ∧ e2 (n2x2, I20) ∧ ... ∧ em (nmxm, Im0) } 01, 02[] I I→ e0 (x0)

Similarly, assuming every sourcing event is consumed by this rule, this structure

can be transformed into a Petri net as shown in Figure 3-10. As the Petri net model

shows, each precondition can be modeled as an input place of transition t0, and the result

e0 is the output place of this transition. This Petri net exhibits an N causes – 1 result

pattern; so does the Petri net representation of Example 6.

Example 6: When the shipper of a confirmed order (e2) is not available (e1), find

another shipper (e3) in a short time T7. This rule can be logically formulated as:

[0, 7]
1 2 3[() ()] ()Te q e q e q∧ → .

e1

t1

 [I01 , I02]

e0
X0

X1

em
Xm

n0`x0

x1

xm

Figure 3-8: Petri Net for 1 Causes – N Results (Pattern 5)

e2
Qq

qe0

Order delayed

Q

Shipment rescheduled

Q

t1
e1 q

Customer notified

[0, T6]

Figure 3-9: Petri Net of Example 5 (Pattern 5)

www.manaraa.com

81

The Petri net of Figure 3-11 shows the precise representation of this rule. In

Figure 3-11, two events e1 and e2 in conjunction produce one result, event e3.

Pattern 7 (non-occurrence of an event pattern): The above patterns were all

based on the occurrence of events. However, non-occurrence of an event can also signal

valuable information and hence we need a pattern for that. Negation is usually used to

express the non-occurrence of a particular event. Typically, non-occurrence of an event

and occurrence of some other events may, in conjunction, cause some other significant

events to happen. The following logical formula describes this situation:

{e1 (n1x1, I10) ∧ [¬e2 (n2x2, I20)]} 31, 32[] I I→ e3 (x3)

Event e1 and non-outcome of e2 cause e3. Actually, if event e1 is consumed by this

rule, this formulation can be transformed into a Petri net similar to Figure 3-11, except

the arc from place e2 to transition t1 replaced by an inhibitor arc, as Figure 3-12 shows.

 e1

t0 e0

X0

X1

em
Xm

x0

n1`x1

nm`xm

 [I01, I02]

Figure 3-10: Petri Net for N Causes – 1 Result Pattern

e1 e3

Shipper unavailable
Q Q

q

e2

Order Confirmed

q
t1

Find another shipper

[0, T7]
q

Figure 3-11: Petri Net of Example 6 (Pattern 6)

www.manaraa.com

82

(See [21] for the semantics of inhibitor arcs in colored Petri nets.) In general, Figure 3-12

and the Petri net representation of Example 7 have a non-occurrence pattern.

Example 7: When an order arrives (e1), if there is no out-of-stock (e2) situation,

the order is confirmed (e3). Logically, this rule can be formulated as:

[0, 8]
1 2 3{ () [(, 2)]} ()Te q e s T e q∧ ¬ → .

Figure 3-13 is the Petri net model of Example 7. After the order arrives, a token is

put into place e1. At that time, if there is no token in place e2 it means there is no out-of-

stock event, and transition t1 fires in a short time, say [0, T8], and puts a token in place e3

to indicate the order is confirmed. Otherwise, if there is a token in place e2, it inhibits the

firing of transition t1.

However, some Petri net tools may not support inhibitor arcs. We can substitute

inhibitor arcs with an equivalent structure that works for CPN tools [75] and is described

in Appendix A.

e1

t3 e3
X3

X1

e2
X2

x3
n1`x1

n2`x2
I20

[I31 , I32]

Figure 3-12: Non-Occurrence Pattern (Pattern 7)

e2

e3

Out-of-stock
S

Q
q

q e1
Order arrival

Q

s
t1

Order confirmed

[0, T8]

Figure 3-13: Petri Net Example 7 (Pattern 7)

www.manaraa.com

83

In this section, we have developed 7 basic patterns that capture cause-effect

relationships in Petri-nets. Next, we will use an example to show that these patterns can

be combined together as building blocks to create more complex Petri-nets.

3.4.3 Composing New Patterns and Creating User-Defined Patterns

Above we discussed 7 basic patterns to capture complex cause effect

relationships. Now we demonstrate how they can be combined to create new user-defined

patterns. In general, patterns can be combined (or composed) if they have common input

or output events (i.e., places that have the same label). By superimposing common places

shared by existing patterns, new patterns can be created. This approach has been used in

modeling logic programs as Petri nets [83]. Obviously, if two patterns do not share any

events then they cannot be directly composed. The possible scenarios for pattern

combination are as follows:

(1) The output place of one pattern is the input place of another pattern (sequential)

(2) The two patterns have one or more common input places (Parallel 1)

(3) The two patterns have one or more common output places (Parallel 2)

(4) The two patterns have common input and output places (Parallel 3)

When two patterns are composed in sequence, they form more complex cause-

effect chains. On the other hand, if they share common inputs, the patterns will compete

for firing by taking tokens from the common event places and have exhibit more complex

interactions. A detailed analysis of the various possible interactions for the different

www.manaraa.com

84

combinations is beyond the scope of this essay; however, we will illustrate our approach

by showing how two new, non-trivial and useful, user-defined patterns can be created.

First, we create a new pattern to "initialize B when A occurs", as shown in

Figure 3-14. Thus, when event A occurs, already existing occurrences of event B must be

cleared. This event initialization pattern can be created by composing existing patterns as

follows:

(1) Using Pattern 6, when event A happens, if prior B events exist, they are cleared

(Figure 3-14(a)).

(2) Then, Pattern 7 is used such that transition t2 fires when the place for event B is

empty and puts a token in the place marked "No B since A" (Figure 3-14(b)).

(3) Combine Pattern 6 and Pattern 7 by superimposing common places for events A and

B (Figure 3-14 (c))

Similarly, in Figure 3-15 we show how another new pattern called consecutive

events can be created using this new event initialization pattern as a building block. The

consecutive events pattern generates an exception event when events A and B (initialized

after A) happen within a time interval T. To create this pattern, we first apply Pattern 6 to

places “No B since A” and B, as shown in Figure 3-15(a). If tokens do not arrive in B

within the required interval, then tokens in places “No B since A” are said to expire.

Later, we combine the new event initialization pattern with Pattern 6, as shown in

Figure 3-15(b). We can foresee various applications for these new patterns. For example,

the consecutive events pattern could be used in a supply chain to notify the manager if a

"machine breakdown" and "no shipment arrival" events occurred within 1 day. Similarly,

in telecommunication applications also such consecutive events would be useful [28].

www.manaraa.com

85

Clearly, although the seven basic patterns are not exhaustive, the ability to

compose them and create new patterns is a powerful feature that allows us to model most

realistic situations. Moreover, if necessary, new primitive patterns can also be created

from scratch by giving their Petri net description.

3.5 An Example of Event Causality Analysis Using Petri Nets

In this section, we will first show a Petri net that is built using the above seven

patterns in the context of a realistic supply chain scenario. Subsequently, we will analyze

event causality by simulation and dependency graphs.

B

t1

A

B is empty

B

t2

A

No B since A
 B

t1A

B is empty

t2

No B
since A

Initialize B

(a) Apply Pattern 6

(b) Apply Pattern 7

(c) Combine Pattern 6 and 7

Figure 3-14: Composing Event Initialization Pattern by Combining Patterns 6 and 7

 (a) Apply Pattern 6 (b) Combine event initialization and Pattern 6

Figure 3-15: Composing Consecutive Events Pattern from Event Initialization Pattern and
Pattern 6

t4B

No B since A

t3

2+
Exception

Expire

?2+∆

B

Initialize B

A

No B since A

t4

t3
2+

Expire

Exception

?2+∆

www.manaraa.com

86

3.5.1 Scenario of Events and Rules for a Complete Petri Net

First, we will give an example scenario description. Suppose there is a Vendor

Managed Inventory (VMI) arrangement between a distributor and a vendor. In this

arrangement, the vendor manages the inventory level for the distributor, proposes new

supply orders to the distributor, and ships them after the distributor’s approval. The

distributor sells products to its customers, and normally ships its customers' orders (for

simplicity, we just call them orders) from stock, but whenever there is an out-of-stock

situation, a rush supply order is placed with the vendor. When there is more than one out-

of-stock event in a week at the distributor, this situation should be considered as a supply

chain exception and reported to the supply chain manager immediately. The vendor

would usually respond to rush supply orders as soon as possible, but they may be rejected

if there is a serious production delay. Moreover, in case of production delay, all supply

orders may be delayed. The distributor can contact an alternative vendor for

replenishment in case that its normal or rush supply order is delayed or rejected. Figure 3-

16 shows all the trading partners in such a supply chain. For simplicity, in this figure we

assume there is one product, but one can similarly model multiple products also as we

show in Section 6. First, we need to identify the events and then write the rules that

connect them together. The events of interest are summarized in Figure 3-17 and each

event corresponds to a place in the Petri net.

www.manaraa.com

87

Next, we consider the rules that relate these events to one another, and also refer

to the corresponding patterns used for modeling these rules (in parentheses).

1. When a customer order arrives (p1) and there is no out of stock (not p2), the order is

confirmed (p6). (Pattern 7: Non-occurrence)

2. When a customer order arrives (p1) but there is an out-of-stock (p2), a back order

(p3) is generated. (Pattern 6: N causes – 1 result)

3. When a back order occurs, a rush supply order with lead time L1 is sent to the vendor

(p4). (Pattern 1: Simple cause-effect)

 Customers Distributor Main Vendor

Alternative Vendor

Customer
Order

 Main supply order
(normal or rush)

Alternative supply order (rush)

Figure 3-16: Interactions between Trading Partners in the Example Supply Chain

Figure 3-17: Possible Events in the Supply Chain

Place (or event) description

p1: Customer order arrival p2: Out-of-Stock
p3: Back order p4: Rush supply order
p5: Rush supply order confirmed p6: Customer order confirmed
p7: Customer order delayed p8: Notify customer of order delay
p9: Customer order cancelled p10: Customer order shipped
p11: Out-of-Stock event expires p12: Notify supply chain manager
p13: Rush supply order rejected p14: Production delay
p15: Supply order delayed p16: Contact alternative vendors
p17: Stock unavailable when delivery is due p18: Rush supply order shipped
p19: Alternative sourcing failed p20: Customer order rejected
p21: Production delay (p14) resolved p25: Back order cancelled
p22: p2′ expired p23: p3′ expired p24: p5′ expired
p26: p5″ expired p27: p6′ expired p28: p2″ expired

www.manaraa.com

88

4. When the rush supply order is confirmed by the vendor (p5), the back order is also

confirmed to the customer (p6). A back order must be confirmed within L2+T3,

where L2 is the lead time of the back order, and T3 is the maximum allowed delay

time; otherwise, it expires and is cancelled (p25) (Pattern 6: N causes –1 result)

5. If there is a production delay (p14), any incoming rush supply order is rejected (p13),

because there is no production capacity left to fulfill any rush supply order in a short

time. Otherwise, the rush supply order is confirmed. A production delay can be

resolved in time interval [a, b]. (Pattern 6: N causes – 1 result; Pattern 7: Non-

occurrence)

6. A rush supply order is shipped during time [0, L1] if there is no production delay (not

p14). (Pattern 7: Non-occurrence)

7. A production delay (p14) can cause a supply order delay for more than time T4 (p15)

and can also lead to unavailable inventory when customer order delivery is due (p17).

(Pattern 5: 1 cause – N results)

8. If a rush supply order is rejected (p13) or delayed (p15) for more than time T4,

contact alternative vendors for alternative sourcing (p16). (Pattern 4: 1 of N causes-

single result)

9. When a rush supply order is shipped (p18) by one of alternative vendors, the

corresponding back order can be confirmed (p6) and shipped (p10); otherwise, the

customer order can be rejected (p20). (Pattern 6: N causes – 1 results; Pattern 1:

Simple cause-effect)

10. When a supply order is shipped from a vendor (p18), inventory is available for

delivery (so if there is a token in p17, it is removed). (Pattern 6: N causes – 1 result)

www.manaraa.com

89

11. When delivery is due, if inventory is available (not p17), the order is shipped (p10).

(Pattern 7: Non-occurrence)

12. a. If an order (with lead time L2) has not been shipped in time L2 after it is confirmed

(p6), the order is delayed (p7).

 b. If an order is delayed (p7) more than time T3, then the order is cancelled (p9).

(Pattern 3: Inclusive choice)

13. If there are two unresolved out-of-stock events (p2) during time T2, the supply chain

manager is contacted immediately (p12). (Pattern 2: Repeat_cause-one_effect)

14. If the order is delayed (p7), notify the customer at time T1 (p8). (Pattern 1: Simple

cause-effect)

The above 14 rules can be formulated in terms of colored time Petri nets as shown

in Figure 3-18. The darkened places in the figure are input events of this net. Place p1

contains two different tokens representing the two order arrivals. Events which are not

consumed by event rules are transformed into multiple places, such as p2, p2', and p2",

where p2 holds tokens for events, and the others are special mechanism for preventing

repetitive firing of transitions.3

This Petri net was implemented using CPN Tools [75]. CPN Tools is a graphical

computer tool supporting Colored Petri nets (CPN). The details of the CPN

implementation are given in Appendix A. In addition, since CPN Tools does not

explicitly support time, a workaround is introduced to add temporal constraints to a

3 This point was explained in Section 3.4.1in the non-consumption case

www.manaraa.com

90

transition.4 Figure 3-19 (b) shows an implementation of Rule 1 and Rule 2 from the

detailed supply chain example above (See Figure 3-19(a)) in CPN Tools. In Figure 3-

19(b), "ORDER", "STOCKOUT", and "BACKORDER" are color sets of different places.

Place p1 contains two tokens. For example, 1`(2, [a, c])@10 means there is one token (1`)

with color (2, [a, c]) and timestamp 10 (@10). Note that "2" is the order number (of

integer data type) and [a,c] is a list of products (of list data type), which here denotes two

products, "a" and "c" for order 2. In addition, Figure 3-19 (b) is a hierarchical Petri net.

The tag "rule1&2" attached to a transition shows this transition can be substituted with

the sub-Petri net of Figure 3-19(a). It should also be noted that an inhibitor arc is

substituted by an equivalent structure with normal arcs, so inhibitor arcs also reflect

causal relationships between events. For example, in Figure 3-19(b), p6 (confirmed

order) depends on both p1 (order arrival event) and p2_1 (out-of-stock). More precisely,

an occurrence of p1 and non-occurrence of p2_1 lead to p6.

4 CPN Tools supports a notion of time. However, since it is an executable language allowing for automatic
simulation it requires deterministic or stochastic time. Hence, the interval times are translated into guards
based on an explicit clock.

www.manaraa.com

91

Production
delay

Note:
Color: q∈ {Q: order set}
Dark places: external events
Dotted part: input of external events
∆: a short time period, ∆ 0.

copy
of p6'

copy
of p6 copy

of p3

p4

p3

3-1

p6

11-1 4-1 p10

p7 12-1

12-2 p9

14-1 p8 q

5-1

q

5-3
p17

8-1

p15

7-1

p14

p16

9-2

p18

10-1

9-1

p19

6-1

p13

8-2 9-3

p5

9-4 p20

copy
of p14

2-1

p1

13-1 13-2
T2

p12 p11

2

q

Order Arrival

∆

p2

Availability
checking

p2"

p2' 1-1

p3'

p5'

p5"

p6'

2-2

p22

13-3

p28

3-2

p23

7-2

p26

4-2

p24

12-3 p27

2

q

q

q
q

q

q q

q

q
q

q

q q

q
q

q
q q

q

q q

q

q q

q

q

5-2

p21

q

q

q

q q

q

q
q q q

q

q q

q

q

qqq
qq

q

q

q

q

q

q q
q

q

q

[L2, L2+T3] [0, ∆]

 L2+T3+∆

 [0, L2+T3]

T2 [0, L1]

L1+T4

[0, L1]

[a, b]

∆

∆

∆

 L2+T3+∆

L1+T4+∆

[0, L1]q

q

4-3 p25
q

q L2+T3+∆

2

token
sink

Figure 3-18: A Supply Chain Event Petri Net

p3

q

2-1

p1

q

p2

p2' 1-1 p6'

2-2
p22

q

q

∆

(a) Rules 1 & 2 (b) CPN implementation

Figure 3-19: Mapping Rules 1 and 2 (in Figure 3-18) to CPN Tools

www.manaraa.com

92

Details of CPN Tools and hierarchical Petri nets can be found in [40]. Next, we

will analyze events using dependency graphs based on running this model.

3.5.2 Dependency Graph Analysis

The Petri net shown in Figure 3-18 (and its CPN Tool representation shown in

Figure A-1, Appendix A) can be considered as an "event machine," i.e. when fed with

input events, it will generate a set of composite events (both intermediate and final), and

show the causal relationships between them. The behavior of this "machine" for the life

of a particular instance or for a given time period can be represented by a simple

dependency graph [31]. A dependency graph is a cause-effect graph of events produced

from one or more Petri net instances (say, one or more orders) over a time period. The

dependency graph is created from the Petri net by using the rule that the output event(s)

of a transition depends upon its input event(s).

By executing the Petri net model with actual case data, we can create dependency

graphs to show causal relationships that actually transpired between events. Table 3-1

describes the sequence of event occurrences and the transitions that fire when the events

take place. The relationships are reflected in Figure 3-20 that shows an event dependency

graph generated based on the Petri net of Figure 3-18. Moreover, it also gives the

correspondence between place numbers and event numbers. (Note that the events and the

corresponding place numbers are not always the same.) The table also gives time values

in the last column. These times are based on assigning suitable values for a hypothetical

case to the parameters of Figure 3-18 as follows in time units (say, days):

www.manaraa.com

93

L1 = 20, L2 = 50, T1 = 1, T2 = 50, T3 = 20, T4 = 10, a = 60, b = 80.

Event Description Trans. fired Place Time
E1 Order O1 arrival - p1 0
E2 Out-of-Stock of product A (forO1) - p2 0
E3 O1 is on back order 1-1 p3 0
E4 Rush supply order R1 is placed for O1 3-1 p4 0
E5 Supply order R1 is confirmed to customer 5-3 p5 0
E6 Order O1 is confirmed 4-1 p6 0
E7 Order O2 is received - p1 10
E8 Product A is out-of-stock (forO2) - p2 10
E9 O2 is placed on back order 1-1 p3 10
E10 Rush supply order R2 is placed for O2 3-1 p4 10
E11 Contact supply chain manager 13-1 p12 10
E12 Product A production is delayed - p14 10
E13 Rush supply order R2 is rejected 5-1 p13 10
E14 Alternative vendor is contacted for R2 8-2 p16 10
E15 Rush supply order R1 is delayed for time T4 7-1 p15 30
E16 Product A is unavailable when O1 is due 7-1 p17 30
E17 Alternative vendor is contacted for R1 8-1 p16 30

E18
Rush supply order R2 is shipped from the alternative vendor
(i.e., non-occurrence of event “product unavailable when O2
due”)

9-1 p18 30

E19 Order O2 is confirmed 9-3 p6 30
E20 Order O2 is shipped 11-1 p10 31
E21 Order O1 is delayed 12-1 p7 50
E22 Alternative sourcing attempt for R1 failed 9-2 p19 50
E23 Notify customer about order O1 delay 14-1 p8 50
E24 Order O1 is cancelled 12-1 p9 71

Figure 3-20 enables us to analyze the various events and their causes. The events

that represent exceptions are shaded in this figure. The consequences of a particular event

can be traced forward along this directed graph, while the causes of it should be traced

backwards until one or more root nodes are reached. For example, it is not difficult to see

that E8 and E12 are the main causes of exception E13, i.e., product A was out of stock

with the distributor and a rush supply order R2 was issued, but this rush supply order was

Table 3-1: A Trace of Possible Event Sequence Generated from Figure 3-18

www.manaraa.com

94

rejected by the vendor because of a production delay. Similarly, the graph shows that the

ultimate exceptions resulting from E12 are E21, E22 and E24. The sequence of main

events is as follows:

Production is delayed (E12) rush supply order R1 is also delayed (E15) another

vendor is contacted (E17) alternative sourcing failed (E22) Order O1 cancelled (E24)

Moreover, notice that the exception E11 (notify supply chain manager) happens

because of two stock-out events of product A within 50 time units as denoted by events

E2 and E8. Thus:

Stock out of A for order O1 (E2) & Stock out of A for order O2 (E8) Notify supply

manager (E11)

Actually, Figure 3-20 only shows one possible scenario and gives the ultimate

disposition of orders O1 and O2 (O1 was cancelled, while O2 was fulfilled). Figure 3-21

shows another out-of-stock situation during order fulfillment; however, now the outcome

is different. Here, E16 (Product A unavailable when O1 is due) is resolved by E18 (Rush

supply order for R2 shipped from the alternative vendor). Therefore, order O1 is shipped

Figure 3-20: Dependency Graph of Table 3-1 (Exceptions Shaded)

E2

E3

E17

E24
E10

E13

E11

E5

E7

E15

E1

E6

E9

E4

E8

E14

E16 E12

E22

E23

E18

E19

E20

E21

www.manaraa.com

95

(E20) within its lead-time. Later on, in spite of E21 (alternative sourcing for R1 fails),

rush supply order R1 is shipped (E22) from the main vendor after some delay.

Eventually, order O2 is also fulfilled (E24) by the incoming inventory from rush order

R1. The modified events for this scenario are shown in Table 3-2 (events E1 through E17

are the same as in Table 3-1). Figure 3-21 shows the new dependency graph for these

events. Nevertheless, E11 (notify supply chain manager) still happens as before.

Event Description Trans. fired Place Time

… Events E1 thru E17 are same as in Table 1 …

E18 Rush supply order for R2 shipped from the alternative
vendor. 9-1 p18 30

E19
Product available for O1 (token in p17 removed) (i.e.,
non-occurrence of event “product unavailable when
O1 due”)

10-1 p17 30

E20 Order O1 shipped 11-1 p10 30
E21 Alternative sourcing for R1 fails 9-2 p19 50
E22 R1 Shipped from the main vendor 6-1 p18 80
E23 Order O2 confirmed 9-3 p6 80
E24 Order O2 shipped 11-1 p10 80

These two dependency graphs show only two of many possible scenarios and

serve to illustrate our approach. The advantage of this approach is that using a Petri net

model as an event machine we can generate dependency graphs to predict and analyze

different "interesting" scenarios. Moreover, by playing "token games", supply chain

managers can explore a large number of possible event dependency graphs which lead to

desirable results (e.g. order fulfilled successfully) or significant exceptions (e.g., order

cancellation). The design of an algorithm or heuristic that can automatically generate

dependency graphs containing such events of interest is left as a future exercise. In this

Table 3-2: An Alternative Scenario of Events Generated from Figure 3-18

www.manaraa.com

96

context it should be noted that it is possible to analyze all possible dependency graphs

using reachability analysis techniques [14] for time colored Petri nets. However, as

discussed there this is not very feasible for large problems for complexity reasons and

heuristic techniques are required. Next, we provide a summary of simulation results and

analyze their implications for supply chain management.

3.6 Simulation Results

To demonstrate the practical value of our approach, a detailed simulation

experiment was conducted. In this simulation, we generated a large number of customer

order arrival events and traced the order fulfillment process in terms of times of

occurrence of each event. To make the simulation realistic, we assume there are three

products, say A, B, and C. In general, more products can also be supported. Table 3-3

shows the parameters of our simulation experiment.

Figure 3-21: Dependency Graph of Table 3-2

E2

E3

E17

E20

E10

E13

E11

E5

E7

E15

E1

E6

E9
E4

E8

E14 E16

E12

E21

E18

E22

E24

E19

E23

www.manaraa.com

97

Parameter Name Value or Distribution

Set of items in a customer order Random selection from three products: A, B, and C

Customer order inter-arrival time Exponential distribution with mean of 7 time units

Prob. of successful alternative sourcing (PSAS) 0.5
Inter-arrival time between production delayed
events Exponential distribution with mean of 100

Resolution time for production delay (RT) Uniform distribution range [60, 80]

Normal supply arrival schedule 2 arrivals for each item every 30 time units

The simulation runs for a period from 0 to 3500 time units. 500 customer orders

are generated and processed. Among them, 445 orders were successfully shipped, and the

other 55 orders were cancelled or rejected because of out-of-stock events and failures to

find alternative sourcing. In Table 3-4, the "baseline case" column summarizes the

number of main events generated during the simulation interval. Table 3-4 also shows

that although about one quarter of customer orders (135 out of 500) occur in stock out

situations, yet most of them (84 out of 135) can still be successfully fulfilled through rush

supply orders. In addition, about 10% of customer orders (48 out of 500) are fulfilled by

alternative sourcing, which shows that alternative sourcing is important.

Table 3-5 shows the detailed distribution of out-of-stock events by product. Each

product accounts for about one third of these 182 out-of-stock events. In practice, it may

be difficult for a supply chain manager to trace each one of these 182 events individually.

Using Rule 13 (see Section 3.5.1), we can filter these events and reduce the number of

events sent to the manager. Thus, the supply chain manager may be notified only when

there are two out-of-stock events within a 50 time unit interval. Therefore, the number of

events which needs management attention is reduced to 80, about 40% of the original

Table 3-3: Simulation Parameter Settings

www.manaraa.com

98

number of events. Moreover, the manager can adjust Rule 13 to further reduce this

number suitably.

Baseline case Strategy 1 Strategy 2
Events RT = [60, 80],

PSAS = 0.5 RT = [30, 50] PSAS = 0.7

Order arrivals (p1)* 500 500 500
 -- Customer order shipped (p10) 445 473 475

 -- Customer order cancelled (p9) 4 3 1
 -- Customer order rejected (p20) 47 21 20

 -- Back order cancelled (p25) 4 3 4

Out-of-stock events (p2) * 182 182 182
Production delay (p14) * 35 35 35

Customer order delayed (p7) 4 4 1

Back order (p3) 135 135 135
rush supply order (p4) 135 135 135

rush supply order fulfilled 84 111 111

 -- by main vendor 36 77 33

 -- by alternative vendors 48 34 78

Rush supply order rejected by main vendor (p13) 102 60 102
Supply order delayed (p15) 8 16 6

Contact alternative vendors (p16) 110 76 108
Alternative sourcing failed (p19) 62 42 30

Performance Indexes
Customer order fill rate 89% 95% 95%

Average customer order fulfillment time 28 27 28

Average replenishment time of rush supply orders
(main vendor) 54 18 27

Average replenishment time of supply orders
(alternative vendors) 10 10 11

In addition, the events in Table 3-4 can be used to calculate key performance

indexes of the supply chain. As Table 3-4 shows, the fill rate of customer orders is 89%

and the average time between an order arrival and the shipment of the order is 28 time

units. In addition, on average, it takes 54 time units for the main vendor to replenish rush

Table 3-4: Comparing Different Strategies in Terms of Events

*: These are input events. The three strategies have the same input events.

www.manaraa.com

99

supply orders, because production delays occur frequently (35 delay events) and they last

a while before being resolved. In contrast, it takes a shorter average time (10 time units)

to get supplies from alternative vendors. In general, since the customer order fill rate is

somewhat low, the performance of this system may need to be improved. We show next

how this can be done with our approach.

Products A B C Total

Out-of-stock events 53 66 63 182

Notify supply chain manager of out-of-stock events 24 29 27 80

An important aspect of our approach is the ability to do sensitivity analysis. To

show how such analysis can help to improve the performance of this supply chain, we

alternately considered the effect on performance of changing two parameters: reducing

the resolution time of production delays (Strategy 1), and increasing the probability of

finding alternative sourcing (Strategy 2). Strategy 1 considers the possibility that a

production delay can be resolved in a time interval [30, 50] instead of [60, 80]. For

Strategy 2, another alternative vendor is introduced into the supply chain so that the

probability of finding alternative sourcing is increased to 0.7. The simulation results of

these two strategies are also shown in Table 3-4. Using Strategy 1, although there is a

large number of back orders, more than a half of them (77 out of 135) are still delivered

through successful rush supply orders from the main vendor (only 34 back orders are

replenished by alternative vendors). For the second strategy, 70% of back orders (78 out

of 111) are fulfilled by alternative vendors. Both strategies lead to an increase in the fill

Table 3-5: Numbers of Out-of-Stock Events

www.manaraa.com

100

rate of customer orders. Thus, compared with the baseline strategy, Strategy 1 and

Strategy 2 can increase the fill rate to 95%. Similarly, other scenarios can be explored

and analyzed in detail with this technique.

3.7 Comparison with Related Work

Related research for detailed modeling of supply chains is still limited. Active

databases rely on event-condition-action (ECA) rules [65]. Such rules make databases

"active" by allowing them to react to events, i.e., when an event occurs, if some

conditions hold, an action (such as database update, insert, query) is taken. However, the

drawback of ECA rules is that they cannot do event chaining in a natural way, and hence

cannot easily facilitate the analysis of cause-effect relationships between events.

Moreover, they are also unable to trace back the causes of events, or forecast future

events. Finally, temporal attributes cannot be modeled explicitly.

One domain in which event management has been studied with considerable

interest and success is the area of network management. Here the objective is to manage

large number of low-level events that may be related and to extract high-level events that

require management attention while ignoring the unimportant ones. Hasan et al. [34]

provide a conceptual framework for describing causal and temporal relationships between

network events. In [31], Gruschke give a dependency graph based algorithm for event

correlation in networks. This algorithm is used to map raw events in the network to faulty

objects based on the links in the graph. These approaches are relevant in supply chains

also, but they lack a precise representation of temporal constraints. In [18], Time Petri

www.manaraa.com

101

nets are integrated into databases and used for semantic mapping of events in computer

networks. The transitions are associated with guard conditions expressed as database

constraints. It is an interesting approach with possible applications in supply chains, but

harder to implement and verify. In particular, there is no standard approach to transform

an event rule to a Petri net and time constraints are captured in an ad-hoc way. Case-

based approaches for event correlation in networks are given in [54]. These methods

compare a new case against a database of cases and look for stored solutions; however,

they require an application-specific model and are computationally complex. Rule-based

or knowledge-based approaches are discussed in [28, 94]. Here the knowledge of the

expert is described in rules and the rules are applied to diagnose a new problem.

However, formal representations of rules are not provided, and hence it is difficult to

extend those approaches to other domains.

Other related work includes a proactive SCEM system with agent technology

discussed in [16]. While it focuses on event monitoring and alert generation, this system

lacks the capability of analyzing events and suggesting solutions. Patterns have been

studied in many domains, but the ones developed in the context of workflow management

[5, 80] are the closest to our work; however, they do not address the complex temporal

constraints. Classical Petri nets have been used to model rules in knowledge bases [57,

67, 97]. However, high-level time colored Petri nets are naturally more expressive

because, besides capturing temporal constraints elegantly, they can support a rich

vocabulary of event rules, such as sequence operators (and, or), modifiers (last, nth, any,

none), and predicates [28]. We have modeled the part of this vocabulary that is relevant

in supply chains, such as and, or, any, and none, in these seven patterns because our

www.manaraa.com

102

focus is on the most common patterns that arise in supply chains. The other part of the

vocabulary consisting of modifiers can also be modeled as a further extension using the

concepts of guards or multi-set colors in Petri nets (see [40, 41]).

3.8 Conclusions

We developed an approach for modeling event relationships in a supply chain

through Petri-nets. The formalism consists of seven basic patterns that capture cause-

effect relationships in Petri-nets. These patterns can be combined together as building

blocks to create other patterns and also more complex Petri-nets. We used a very

extensive example to illustrate this approach and showed in detail how dependency graph

analysis can be used to determine causal relationships between events in a dynamic

supply chain. It should be noted that these relationships are complex and depend upon the

exact timing of events. We demonstrated that slight changes in temporal relationships

can result in a very different dependency graph and also final outcome.

Petri net simulation offers a mature technique for analyzing the Petri net models,

and the easy availability of many Petri net software packages is an asset. We

implemented Petri net models using CPN tools and performed sensitivity analysis by

simulation. By changing a specific event parameter, such as event resolution time, we can

show how supply chain performance is affected. Such scenario analysis can suggest

solutions to improve supply chain performance. Therefore, by managing events, we can

actually manage supply chain performance. We ran comprehensive simulation

www.manaraa.com

103

experiments illustrated how this approach can help decision makers to improve supply

chain performance.

In summary, as supply chains become more tightly integrated across partners, it is

becoming increasingly important to respond in real-time to events (also called sense-and-

respond capability). We described a novel approach to model event relationships in a

supply chain using Petri-net patterns that can be combined to create realistic Petri-net

models of supply chains. We further implemented a model in a Petri-net modeling and

simulation tool, and ran simulation experiments with it. A unique feature of the approach

is that the Petri-nets are constructed from patterns or building blocks which can be

composed together and extended to create new user-defined patterns.

In future work, we would like to develop more formal verification techniques for

the supply chain models, and also develop heuristics for reachability analysis of

dependency graphs to predict "interesting" events.

www.manaraa.com

Chapter 4

An Analysis, Taxonomy and Correctness Algorithms for Unstructured Workflows

Abstract: Most workflow tools support structured workflows despite the fact that
unstructured workflows can be more expressive. This is because unstructured workflows
are more complex, and thus also more prone to errors. In this essay, we describe a
taxonomy that serves as a framework for analyzing unstructured workflows consisting of
both acyclic patterns and loops. The taxonomy characterizes unstructured workflows in
terms of two considerations: improper nesting and mismatched pairs. We also introduce
a relaxed notion of correctness called weak correctness, as opposed to the conventional
notion of strict correctness. Then, we develop a framework for analyzing unstructured
workflows in terms of weak correctness and give an algorithm for diagnosing workflows.
The diagnosis algorithm detects structural flaws and reports causes for blocked nodes,
deadlocks and multiple instances. The results of this study will be useful for researchers
investigating expressiveness and correctness issues in unstructured workflows.

4.1 Introduction

Workflow technology has emerged as an important tool for businesses to integrate

and automate business processes, not only within a company, but also throughout the

entire supply chain, giving rise to complex inter-organizational processes. Process

modeling involves methodologies for designing business process models properly before

they are implemented as workflows [29]. It is essential that process models not only

precisely capture business requirements but also ensure successful workflow execution. If

a process is put into production before being carefully checked and verified, it could fail

to execute properly and cause considerable loss to a business. A correct process model is

one without structural flaws, such as deadlocks, livelocks, and lack of synchronization [4,

www.manaraa.com

105

81]. Therefore, it is very important that the correctness of workflows be verified before

hand, i.e. before the process models are implemented. This requires a systematic way to

detect and fix structural flaws at design time. Moreover, as interest in web services grows

[7], it will be increasingly important to use process modeling methods to create

composite web services that can combine several individual services in a meaningful

way.

Traditionally, structured workflows have been widely used to model business

processes because of their guaranteed correctness. However, as workflow processes

become more complex, those processes cannot always be represented in a structured way.

Moreover, structured workflows are not able to offer the desired flexibility and

expressive power. Hence, unstructured representations that offer greater expressive

power are required. Also, a lot of business processes are designed by non-technical end-

users. From the point of view of such a user, there is more flexibility to be able to design

a workflow with both structured and unstructured patterns and then have a diagnosis

algorithm to analyze it. Based on the analysis, the algorithm may either convert the

workflow design into an equivalent structured representation, or may point out any errors

for the user to correct and then rerun the algorithm.

To illustrate an unstructured workflow, consider Figure 4-1 that shows a simple

workflow for handling orders in a just-in-time supply chain. In this scenario, after an

order is received (A1), the available supply is checked (A2), and accordingly, two orders

are placed for standard items (A3) and special items (A4) in parallel with separate

suppliers. If special items are immediately available, the supply schedule is updated

(A5). After both standard and special items are received, the order is assembled and

www.manaraa.com

106

delivered (A6). However, if special items are not available, an alternative supplier must

be found (A7) and a new schedule for delivery is proposed to the customer (A8).

Unfortunately, the scenario described in Figure 4-1 cannot be precisely modeled as a

structured workflow. One approximate way to model it in a structured way is by placing

A3 and A4 in a sequence. However, this would not capture the desired semantics.

In addition, Figure 4-2 shows another unstructured workflow which models a

paper review process. In [76], this workflow is called parallel branching with final

selection. In this process, a manuscript is reviewed by two people. As soon as one review

is received, the decision is made and the other reviewer is notified not to send a review.

Again, this realistic process cannot be modeled as a structured workflow, and is

characterized later as an AND-OR mismatched pair. However, this workflow may raise

the problem that A2 and A3 are not synchronized properly, even though it works well in

practice.

These workflows also raise several questions. For instance, returning to the

workflow in Figure 4-1, is the workflow correct? If the standard and special items are

immediately available, then the workflow finishes normally. However, if the special

items are not available, then an alternative path is taken via A7 and A8. In this case, the

workflow gets blocked at an AND-join node C1J, and, one path of the workflow reaches

the end, while another path remains unfinished. We treat such a workflow as weakly

correct (as opposed to strictly correct) because it did finish, even though one path

(containing A3) did not synchronize properly. Later we will characterize this example as

one of AND-OR improper nesting. Such situations arise only in unstructured workflows

and therefore, new relaxed notions of correctness are required. With regards to the

www.manaraa.com

107

blocked And-Join at C1J, it is possible to add another step A9 that would return the

standard items purchased and, in effect, undo A3. Thus, this workflow will not deadlock,

even though there is redundant work in the form of A3. Also, if the standard items can be

used later, there is no need to return them at all.

A2: Check Supply

and

or

A3: Purchase
standard items

and

A4: Purchase
special items

A7: Find another
supplier

A6: Assemble and
deliver to customer

or

C2J

C1J

C2S

A5: Update
supply schedule

A1: Receive order

C1S

No

Yes

A9: Undo A3

A8: Propose new
delivery schedule to

customer

Figure 4-1: Order Handling in a JIT Supply Chain (AND-OR Improper Nesting)

and

A1: Send paper to
two reviewers

A2: Receive review 1 A3: Receive review 2

or

A4: Make decision (the other
reviewer is notified)

Figure 4-2: A Paper Review Process (AND-OR Mismatched Pair)

www.manaraa.com

108

We argue in this essay that workflows shown in Figure 4-1 and Figure 4-2 should

be designable and also verifiable. In the case of Figure 4-1, if an improper exit occurred,

causing A3 to remain as an unfinished path, possible solutions are to undo A3

automatically or by a user-defined step shown as A9 in Figure 4-1, or inform the user

about it during verification and let the user decide. Similarly, for the workflow in

Figure 4-2, possible ways of handling multiple instances are to ignore the second instance

at the Or-Join node, and provide support for the additional instance (such as generating

an exception or a notification). However, a critical challenge lies in how to verify such

workflows and show that they are weakly correct. Therefore, verification assumes great

importance.

The second question relates to determining and analyzing the structural anomalies

in a workflow. If execution problems exist, what structural flaws cause them? How can

those execution problems be detected based on the workflow structure and how can

structural flaws be corrected? These questions will be answered in this essay.

Workflows allow coordination of various activities in a process through control

elements such as AND-Split, AND-Join, OR-Split and OR-Join. One accepted notion of

correctness is structuredness. A structured workflow is one in which each split control

element (e.g., AND, OR) is matched with a join control element of the same type, and

they are also properly nested. However, not all workflows are structured; some

unstructured workflows give more expressive power than structured ones, and are also

correct. Thus, the requirement of structuredness is restrictive. In this essay, we introduce

notions of improper nesting and mismatched pairs as a means to organize our taxonomy

of unstructured workflows. The taxonomy serves as a means of analyzing the main

www.manaraa.com

109

building blocks that constitute a given workflow model and helps us in determining the

correctness of this workflow model. Also, following the pioneering work of

Kiepuszewski et al. [45], we categorize unstructured workflows that have equivalent

structured mappings and those that have what we call quasi equivalent structured

mappings. Quasi-equivalence is a relaxed notion of equivalence based on uni-directional

bisimulation [45], and it allows multiple instances of an activity to exist concurrently. We

will show later that in certain situations, multiple instances do not cause correctness

problems. Finally, we develop a diagnosis algorithm that can identify structural flaws of

a workflow and point out the causes of such flaws, derive any structured mappings if they

exist, and draw conclusions on the correctness of this workflow. In particular, we use a

notion of weak correctness, which relaxes the traditional concept of strict workflow

correctness and emphasizes proper termination [35] of a workflow. This concept can also

be used to include contingency plans in workflow models and to handle exceptions.

Related work in this area is still limited, some notable studies being [3, 15, 19, 45,

76, 82, 89]. A graph reduction technique is proposed in [82]. Although this technique can

detect some structural conflicts through a reduction process, it gives no details about the

causes of these conflicts, and, therefore, provides no help for further improvement. A

verification approach based on workflow decomposition is given in [19]. This approach

may not be able to verify unstructured workflows that are hardly decomposed. [45]

addresses the possibility that an unstructured workflow can be mapped to a structured one

through equivalence preserving transformations, but the discussion is mainly through

examples, and lacks generality. The importance of structural consistency and correctness

is also addressed in the context of the ADEPTflex model [76]. Logic-based approaches

www.manaraa.com

110

for workflow verification are discussed by Bi and Zhao [15]. The approach of van der

Aalst and Verbeek is based on converting a workflow into a Petri net and then checking

correctness using a tool like Woflan [3, 89]. The drawback with this approach is that

after the workflow is converted into a Petri-net, it loses its natural structure and is less

understandable by a non-expert end-user. In contrast to those approaches, our diagnosis

algorithm not only provides a Yes/No answer on the correctness, but also gives structural

evidence of execution problems as well as suggestions for corrections.

This essay is organized as follows. Section 4.2 gives workflow definitions and

introduces our taxonomy. Structural flaws are discussed and verified under the

framework in Section 4.3. Section 4.4 discusses the possibilities of transforming an

unstructured workflow to structured one. Section 4.5 considers situations where loops are

present. The algorithm as well as diagnosis experiments are described in Section 4.6.

Section 4.7 summarizes this essay and concludes with a brief description of future work.

4.2 Workflows Definitions and Taxonomy

4.2.1 Workflow definition

Definition 1 (Workflows) A workflow is a directed graph consisting of activities, arcs,

and control elements. The control elements are of the following types: start, end, AND-

Split, AND-Join, OR-Split, and OR-Join where:

(1) Arcs are used to connect activities and control elements.

www.manaraa.com

111

(2) In-degree d -(n) and out-degree d +(n) indicate the number of arcs entering and leaving

a workflow node n respectively.

(3) Each workflow has only one start node and one end node. For a start node s, d -(s) = 0

and d +(s) = 1; for an end node e, d -(e) = 1 and d +(e) = 0.

(4) For any activity a, d -(a) = 1 and d +(a) = 1.

(5) For any join element j, we require d -(j) = 2 and d +(j) = 1. Similarly, for any split

element s, d -(s) = 1 and d +(s) = 2. The in-degree (d -) and out-degree (d +) of an

element can determine whether it is a split or a join.

(6) Every activity or control element is in at least one path from the start node to the end

node.■

Figure 4-3 shows the graphical notation for workflow nodes. For simplicity, and

without loss of generality, we assume that each control element has only two incoming

(or outgoing, as the case may be) branches. A join with d -(j) > 2 can be represented by a

combination of multiple join elements. Similarly, a split with d +(s) > 2 can be achieved

by a combination of multiple split elements. In addition, Definition 1 also implies that, in

a workflow, there is at least one path between any two nodes. This rigorous workflow

definition simplifies our verification approach, but it by no means limits the application

of this approach. Other relaxed workflow models [15, 82] can also be verified by this

approach after simple conversions in accordance with Definition 1.

www.manaraa.com

112

Definition 2 (Workflow paths): A workflow path p is a sequence of nodes n1,

n2,…, nt (t >1) along with arcs in a directed workflow graph. Path p is denoted as p = (n1,

n2, …, nt). ni is a upstream node of nj and nj is the downstream node of ni, for 1 ≤ i < j ≤

t. ■

Definition 3 (Workflow instance): A workflow instance is simply an execution

log of the tasks and control nodes actually executed after the start node is initiated, and

before either the end node is reached or none of the other nodes can be executed ■

4.2.2 Semantics of Control Elements

Next, we discuss the semantics of the workflow control elements. Semantically,

after an AND-Split element, both of its branches can be executed concurrently.

Moreover, an AND-Join element can be executed only after both of its incoming

branches have been executed. We also assume an OR-Split element has the semantics of

exclusive choice, i.e., both branches of an OR-Split are exclusive and only one branch can

be executed at one time. An inclusive choice can be achieved by a combination of And-

Split and exclusive choice [5]. The semantics of an OR-Join element can be one of the

followings:

(1) Single execution: The OR-Join element is executed only once after whichever branch

is done first. The other branch is discarded when they finish.

(c) Activity

or

(f) OR-Split

and

(e) AND-Join(a) Start (b) End

and

(d) AND-Split (g) OR-Join

or

Figure 4-3: Graphical Representations of Workflow Control Elements (or Nodes)

www.manaraa.com

113

(2) Multiple executions: The OR-Join element is executed every time an incoming branch

is done. However, in a situation where an AND-split node is paired with an OR-join

node as in Figure 4-2, the OR-join node can be activated twice, once after each

incoming branch. This situation leads to a problem called multiple instances, as we

will discuss later.

Different workflow tools handle OR-Join nodes differently. In [46], Kiepuszewski

compared different behaviors of OR-Join nodes observed with workflow products. For

example, IBM MQSeries [38] assumes the semantics of "single execution", while

multiple executions can happen with Forte (now Sun eInsight Business Process Manager

[86]). With the semantics of "single execution", there will be no execution problem of

multiple instances. In this essay, since we focus on verification, we assume each OR-Join

node has the semantics of "multiple executions", which could cause correctness issues.

We will identify the workflow situations where multiple instances might be created.

4.2.3 Structured Workflows

Structured workflows impose certain restrictions on the relationships between

control elements. In particular, in a structured workflow, each AND-Split element must

have a corresponding AND-Join element, and each OR-Split element has a corresponding

OR-Join element. There are four basic types of structured workflows [45]: sequence,

decision structure, parallel structure, and structured loop, as shown in Figure 4-4. A

complex structured workflow can be composed inductively based on these four types or

patterns [45]. In addition, any structured workflow (or sub-workflow) can be treated as a

www.manaraa.com

114

single composite activity [82]. Therefore, we will also use the symbol of activity (see

Figure 4-3(c)), to denote any structured workflow or sub-workflow. However, if those

restrictions are not followed during workflow composition, the resulting workflow is

unstructured. Next, we introduce the taxonomy of unstructured workflows.

4.2.4 Unstructured Workflows – Taxonomy

We categorize unstructured workflows in terms of two considerations,

mismatched pairs and improper nesting. We start with the concept of corresponding

control elements.

Definition 4 (Corresponding control elements): A split element s corresponds

to a join element j, if two minimal paths, starting along two different outgoing arcs of s,

first join at j. This corresponding pair s and j is denoted by (s, j). ■

By minimal we mean that any node in any path from s to j does not have the

correspondence property with s. For example, in Figure 4-5, the corresponding pairs are

(C1S, C1J), (C2S, C2J), (C3S, C3J), (C4S, C4J), but not (C1S, C2J), since a path from

C1S to C2J, i.e., {C1S, A1, C2S, A4, C1J, A7, C2J} is not minimal as it already contains

C1J, a corresponding element of C1S. Similarly, we do not have a correspondence (C1S,

Sequence

and and

Parallel structure

or or

Decision structure

or or

Structured loop

Figure 4-4: Basic Types (or Patterns) of Structured Workflows

www.manaraa.com

115

C3J) as C1J is in a path from C1S to C3J. Next, we state some simple lemmas without

proof.

Lemma 1: Every split control element must have at least one corresponding join

control element.

Lemma 2: In general (unstructured) workflows, the split and join control

elements need not be of the same type.

Lemma 3: A split control element may have multiple unique corresponding join

control elements. A join control element may correspond to more than one split control

elements.

Definition 5 (Mismatched pair): A pair of corresponding control elements (s, j)

is mismatched if s is an OR-Split and j is an AND-Join element, or s is an AND-Split and

j is an OR-Join element. (s, j) is called a mismatched pair. ■

A8

or

andA10

A1

or

and

or

A3
A4

A2

and

A7

C1S

C1J

C2S

C2J

C3S
and

or
C4J

A9

A5 A6

C3J

C4S

A8

or

andA10

A1

or

and

or

A3
A4

A2

and

A7

C1S

C1J

C2S

C2J

C3S
and

or
C4J

A9

A5 A6

C3J

C4S

Figure 4-5: An Workflow with Mismatched Pairs and Improper Nesting

www.manaraa.com

116

There are two types of mismatched pairs: (AND, OR) (e.g., (C3S, C3J) in

Figure 4-5) and (OR, AND) (e.g., (C4S, C4J) in Figure 4-5).

Definition 6 (Improper nesting): A pair of control elements (s, j) is improperly

nested with another pair of control elements (u, v), if s (or j) is in a path from u to v, but j

(or s) is not in this path. This is denoted as (u s v) [
] (s, j) (or (u j v) [

] (s, j)). We also write

(u, v) [
] (s, j) to denote the general situation where (u, v) and (s, j) are improperly nested

but the locations of nodes are not specified. ■

In Figure 4-5, there are four improper nestings denoted as: (C1S C2S C1J) [
] (C2S

C1J C2J), (C1S C3S C1J) [
] (C3S C1J C3J), (C2S, C2J) [

] (C3S C2J C3J) and (C3S C4S C3J) [
]

(C4S C3J C4J). Note that once both s and j are in one path between u and v, we say (s, j) is

properly nested with (u, v), although s and j may not both be in another path between u

and v.

Definition 7 (Order of Improper nesting) (u, v) [
] (s, j) is called first-order

improper nesting, if there is no (x, y), such that (u, v) [
] (x, y), where (x, y) ≠ (s, j). (u, v) [

]

(s, j) is called nth-order improper nesting if there exist (u, v) [
] (xi, yi), where (xi, yi) ≠ (s, j)

and i=1, 2, …, n-1. We use (u, v) [
] {(x1, y1), (x2, y2),…, (xn, yn)} to denote n pairs of

corresponding elements nested into (u, v).■

For example, in Figure 4-5, there is second-order improper nesting (C1S,

C1J)[
]{(C2S, C2J), (C3S, C3J)} and third-order improper nesting (C3S, C3J)[

]{(C1S,

C1J), (C2S, C2J) , (C4S, C4J)}.

Obviously, a structured workflow is one that does not have any mismatched pairs

or improper nesting. On the other hand, unstructured workflows, in general, have

www.manaraa.com

117

mismatched pairs and/or improper nesting. This lack of structuredness may cause

structural flaws and give rise to correctness issues, discussed as follows.

4.2.5 Workflow Correctness

In general, there are two typical structural flaws in workflows: multiple active

instances of the same activity (or in short multiple instances) and deadlocks [45, 82].

Next, we give precise definitions for these two structural flaws.

Definition 8 (Multiple Instances) can arise at an OR-Join node when it is paired

with an AND-split node (see Definition 4), and thus both its incoming paths can

potentially be taken separately, and, therefore, the OR-Join and subsequent activities are

activated twice.■

Situations shown in Figure 4-2 and Figure 4-5 are examples of multiple instances.

For example, in Figure 4-5, multiple instances could occur at A10 as a result of the two

paths {C3S, A5, C1J, A7, C2J, A8, C3J} and {C3S, A6, C4S, C3J} being taken separately

after C3S. In general, multiple instances arise because of a mismatched (AND, OR) pair,

for instance, (C3S, C3J) in Figure 4-5. Multiple instances can lead to some undesirable

results, such as redundant activities and competition for resources.

However, although the workflow shown in Figure 4-2 also has a mismatched

(AND, OR) pair, such a pair only does not cause any deadlocks. We classify this kind of

workflows as weakly correct. The advantage of allowing this kind of structure is that it

gives greater flexibility. However, it is the responsibility of the application to make sure

that either all the activity instances are handled properly, or just ignoring the subsequent

www.manaraa.com

118

ones if doing so produces no harmful effects in the process execution. Thus, we take the

view that a diagnosis algorithm should detect and report such cases and then let the

process designer decide whether they are acceptable.

Definition 9 (Deadlock) A workflow is deadlocked when an AND-Join node is

blocked (i.e. exactly one of its incoming paths can be taken) and any node downstream of

this node cannot be executed. ■

Definition 10 (Deadlock-free Workflows) A workflow is deadlock-free if it

never leads to any deadlocks during execution for all possible execution paths. ■

If a workflow is deadlock-free, it can always terminate properly. This is a

fundamental requirement for workflow execution; nonetheless, many workflows suffer

from this problem. For example, in Figure 4-5, there might be a deadlock at C4J if path

{C3J, A10, C4J} is taken after C4S. Hence, this workflow could never end.

In addition, an unstructured workflow may have another problem, blocked nodes,

such as C1J in Figure 4-1. Moreover, a blocked node could cause a workflow to

deadlock.

Definition 11 (Blocked Nodes) An AND-Join node b is blocked if there exists at

least one workflow instance where exactly one of its incoming paths can be taken. ■

It should be noted that only one incoming path can always be taken for a blocked

node. Let b.in be a two-character string that records which incoming paths of b is taken.

If b.in is:

"L-": the left incoming path of b is taken but the right one cannot;

"R-": the right incoming path of b is taken but the left one cannot;

"LR": either incoming path of b might be taken but not both.

www.manaraa.com

119

For example, in Figure 4-5, C4J is a blocked node and C1J.in = "L-". Note that, if

b.in = Ø, neither incoming path of b can be taken. This situation is not problematic

because it just means that the AND-Join will not be activated at all and there is no

correctness issue then. The correctness issues only arise when one incoming branch of an

AND-join node is activated.

Blocked nodes indicate that a workflow has structural flaws. A strictly correct

workflow should not contain any blocked nodes. However, a blocked node is only a

necessary condition for a workflow to deadlock. For a deadlock, there must be a blocked

node, but a workflow with blocked nodes could still be deadlock-free and therefore it is

weakly correct. Thus, we can define two levels of workflow correctness.

Definition 12 (Strict Correctness) A workflow is strictly correct if it leads to

neither blocked nodes nor multiple instances. ■

Definition 13 (Weak Correctness) A workflow is weakly correct if it is

deadlock-free. ■

Obviously, structured workflows are strictly correct. Workflows shown in

Figure 4-1 and Figure 4-2 are weakly correct. Strictly correct workflows have been well

studied in [1, 82]. However, [82] cannot be used to check weak correctness of a

workflow. Actually, in [82], the difference between deadlocks and blocked nodes is not

clearly identified. Sadiq and Orlowska defined "deadlocks" as the situations where paths

from an OR-Split node join at an AND-Join node and therefore a workflow path cannot

continue any further. This definition is equivalent to our notion of blocked nodes. As a

result, the algorithm proposed in [82] cannot tell if a workflow is truly deadlocked or if it

only has blocked nodes. For instance, it will conclude that the workflow shown in

www.manaraa.com

120

Figure 4-1 is "deadlocked". We feel that it is important to clearly make this distinction

between blocked nodes and deadlocks since our notion of weak correctness depends on it.

In addition, although [1] can show that a weakly correct workflow could have extra

tokens remaining in the WF-net after it terminates, the causes of those extra tokens are

not clearly identified. In this paper, we focus on weakly correct workflows by analyzing

blocked nodes.

4.2.6 Workflow Correctness Taxonomy

Thus, a workflow can be classified into the following categories:

(1) Strictly correct

(2) Multiple instances

(3) Deadlock

a. Always deadlocked: all workflow instances are deadlocked.

b. Some deadlocks: at least one workflow instance has a blocked node and this node

is a deadlock causing node because it cannot be bypassed.

c. Deadlock-free: none of the workflow instances is deadlocked. However, some

instances may have blocked nodes, but those nodes are not deadlock causing.

Figure 4-6 shows a workflow with first-order improper nesting, (C1S C2J C1J) [
]

(C2S C1S C2J). Table 4-1 shows all combinations of first-order improper nesting

situations, and characterizes them in terms of correctness according to the above

classification. This allows us to analyze all first-order improper nesting scenarios;

www.manaraa.com

121

however, note that the results may be different in the case of higher-order improper

nesting. We will analyze these later in the essay.

xs

ys

A1

xj

A2

A3

A4

yj

C2S

C2J

C1J

C1S

xs , ys: AND-Split or OR-Split nodes
xj , yj : AND-Join or OR-Join nodes

Figure 4-6: First-Order Improper Nesting

Table 4-1: Behavior of First-Order Improper Nesting and Mismatched Pair Types

Type (C1S C1J) (C2S C2J) Correctness issues Structured transformation
1 OR OR OR OR strictly correct Yes
2 OR OR OR AND some deadlocks No
3 OR OR AND OR multiple instances q-equivalent mapping
4 OR OR AND AND deadlock-free No
5 AND AND OR OR some deadlocks No
6 AND AND OR AND always deadlocked No
7 AND AND AND OR multiple instances q-equivalent mapping
8 AND AND AND AND strictly correct No
9 OR AND OR OR always deadlocked No

10 OR AND OR AND always deadlocked No
11 OR AND AND OR some deadlocks No
12 OR AND AND AND always deadlocked No
13 AND OR OR OR multiple instances q-equivalent mapping
14 AND OR OR AND some deadlocks No
15 AND OR AND OR multiple instances q-equivalent mapping
16 AND OR AND AND multiple instances q-equivalent mapping

www.manaraa.com

122

4.3 Analysis of Structural Flaws

Mismatched pairs and improper nesting are the main causes for these two

structural flaws. In this section, we show analytical results pertaining to those structural

flaws. We start with finding blocked nodes and deadlocks.

4.3.1 Blocked Nodes and Deadlocks

In general, if a workflow is deadlocked, it implies that an AND-Join node is

blocked and it cannot be bypassed. We will discuss the idea of bypassing a blocked node

shortly. In the two workflows shown in Figure 4-7, both C2Js are blocked nodes. In

Figure 4-7(a), C2J.in = "LR". In Figure 4-7(b), C2J.in = "L-". However, in Figure 4-7(a),

if path {C1S, A1, C1J, A4, C2J} is taken, this workflow cannot proceed any further and is

deadlocked. However, in Figure 4-7(b), if the path {C1S, A1, C2S, A4, C3S, A5} is taken,

even though C2J is blocked, yet this workflow can continue to the end and is not

deadlocked. We need a way to find blocked nodes. Next, Theorem 1 allows us to narrow

down the set of nodes that may be blocked, by identifying potentially blocked nodes.

www.manaraa.com

123

Theorem 1: Only the AND-Join nodes either in mismatched (OR, AND) pairs or

in improper nestings of the form (AND OR AND) [
] (OR, OR/AND) can be potentially

blocked nodes.

Proof: Since only AND-Join nodes can be blocked, (OR, AND) pairs or (AND,

AND) pairs must be present in a workflow with blocked nodes. Thus, there are two cases:

(i) (OR, AND) pair (see Figure 4-8 (a)). Here only one outgoing path after the OR-Split

can be taken, and this path might be the only incoming path of the AND-Join node.

Hence, this AND-Join node at C1J is a potentially blocked node.

(ii) (AND, AND) pair is blocked. Here, there are two possibilities: (a) an OR-Split node

in the path from the And-Split to the And-Join node takes a new path (away from the

AND-Join node), as shown in Figure 4-8 (b); (b) an OR-Join node makes a new path

to the AND-Join node without passing the AND-Split node, as shown in the

workflow in Figure 4-8 (c). Either possibility is caused by improper nesting (AND OR

A8

or

or

or

A1

or

A6

A2

A5
A4

and
C3S

C1S

C1J

C2J

C2S

A7 or
C3J

A3

orA1

A2

and

or

or

A3

and

A7

A4

A5
A6

or

C1S

C1J

C2S

C2J

C3J

C3S

(a) A deadlocked workflow (b) A deadlocked free workflow

Figure 4-7: Two Workflows with Blocked Node C2J

www.manaraa.com

124

AND)[
](OR, OR/AND) where the OR-Split node (or OR-Join node) is in a path

between the AND pair, but its corresponding node is not in this path.

Hence, this covers (by enumeration) all the cases where potentially blocked nodes

may arise. ■

From Theorem 1, we can immediately conclude that an unstructured workflow

that only has improper nesting in the form of (AND, AND)[
](AND, AND) or (OR,

OR)[
](OR, OR) never results in any potentially blocked nodes. Moreover, it never leads to

multiple instances since it has no mismatched (AND, OR) pairs. Therefore, such a

workflow is strictly correct. An example is shown in Figure 4-9. This workflow contains

improper nesting (C1S, C1J) [
]{(C2S, C2J), (C3S, C3J)} in the form of (OR, OR)[

](OR,

OR), and (C4S, C4J)[
](C5S, C5J) in the form of (AND, AND)[

](AND, AND). Thus, we

state Lemma 4 without proof as follows.

Lemma 4: An unstructured workflow with only improper nesting in the form of (AND,

AND)[
](AND, AND) or (OR, OR)[

](OR, OR) is strictly correct. ■

or

and

C1S

C1J

A1 A2

and

and

C1S

or

or

C1J

C2S

C2J

A1

or

or

C2S

and

and

C2J

C1S

C1JA1

(a) (OR, AND) pair (C1S, C1J)
C1J. in = "LR"

(b) (C1S C2S C1J) [] (C2S, C2J)
C1J. in = "L-"

(c) (C1S C2J C1J) [] (C2S, C2J)
C1J. in = "L-"

Figure 4-8: Examples with Potentially Blocked Node C1J

www.manaraa.com

125

Also, by Theorem 1, for a potentially blocked node pb, pb.in can be determined as

follows:

(1) If pb is the AND-Join node of an (OR, AND) pair, pb.in ="LR" (see Figure 4-8 (a));

(2) If pb is the AND-Join node in the AND pair of (AND OR-Split AND)[
](OR, OR/AND),

pb.in = {"L-" if the OR-Split node is in the right incoming path; otherwise "R-"} (see

Figure 4-8 (b));

(3) If pb is the AND-Join node of (AND OR-Join AND)[
](OR-Split, OR-Join), pb.in = { "L-

" if the OR-Join node is in the left incoming path; otherwise "R-"}(see Figure 4-8

(c));

Figure 4-8 also shows the pb.in of each potentially blocked node. Note that in

Figure 4-8, dotted lines are used to indicate the paths that may contain more activities or

control nodes but those nodes are not shown here for simplicity. It should be clearly

noted that the AND-Join nodes discussed in Figure 4-8 are only potentially blocked. We

can show that (OR, AND) or (AND OR AND) [
] (OR, OR/AND) may not always lead to

A7

or

or

and

A1

or

A9

A2

A5

A3

or

C3S

C1S

C1J

C2J

C2S

A11 or

C3J

A4

or

A6

and

A10 and

A8

and A12

C4S

C4J

C5S

C5J

Figure 4-9: A Strictly Correct Workflow (but with Improper Nesting)

www.manaraa.com

126

blocked nodes. An example is given in Figure 4-10. In this workflow, an AND pair is

improperly nested with an OR pair in a (C1S C3S C1J)[
](C3S, C3J) pattern, but C1J is not

blocked because of the mismatched (AND, OR) pair (C2S, C2J).

Therefore, we need to test any potentially blocked node, say pb, to determine if it

is actually blocked. Our test can lead to three possible results: (1) pb is actually not

blocked as shown in Figure 4-10; (2) pb is indeed blocked, but the workflow is not

deadlocked because some nodes downstream of pb can still be executed; and (3) pb is

indeed blocked, and the workflow is deadlocked.

If pb is in fact not blocked, we should be able to find an AND-Split node

upstream of pb, from which two paths join at pb without any OR-Split nodes in them. For

example, in Figure 4-10, C1J is actually not blocked because there exists two paths {C1S,

A, C1J} and {C1S, B, C2S, C, C2J, F, C1J} which contains no OR-Split nodes.

However, if pb is indeed a blocked node, then to make a workflow terminate properly

(i.e. reach the end node), a bypass must be found. A bypass is an alternative path that

allows a workflow to complete despite one or more nodes being blocked.

and

or

B

andC

D

or

C1S

C1J

C2S

C2J

A

and

Hor

C3J C3S
E

G

F

Figure 4-10: A Workflow with (AND OR AND) [
] (OR, OR); No blocked nodes

www.manaraa.com

127

Theorem 2: If a blocked node b is not a deadlock causing node, there exists a

bypass from an AND-Split node upstream of b to an OR-Join node downstream of b.

Proof: We first show that there must be an OR-Join node downstream of b using

an argument based on contradiction. Suppose there are no OR-Join nodes downstream of

b. Then, the downstream nodes of b are activities, split nodes, AND-Join nodes, or the

end node ne. Let (b, n1, …, ni, …, ne) be any path after b. n1 cannot be executed since one

required input is from b, which is blocked. In general, ni cannot be executed since its

required input ni-1 is never executed, for 1< i ≤ e. Therefore, node b becomes a deadlock

causing node, which contradicts the assumption of the theorem.

Next, we show that there must be an AND-Split upstream of b. Since b is blocked

by definition, and has two incoming paths (p1 and p2), out of which, say p1, is taken.

Further, because b is not a deadlock causing node, there is at least one path, say pass1,

going through an OR-Join node downstream of b. Both paths p1 and pass1 can be taken,

but they are not in a sequence (path pass1 cannot be taken after p1, since b is the dead

end of p1 and, also, p1 cannot be taken after pass1, since pass1 contains a downstream

node of b). Therefore, paths p1 and pass1 must be reached from an AND-Split node,

which is obviously upstream of b. Finally, pass1 does not contain b and is, therefore, a

bypass for b. ■

Based on Theorem 2, clearly, if b is a deadlock causing node, either there does not

exist an AND-Split node upstream of b, or there is no bypass for b. Therefore, we can

design an algorithm to test a potentially blocked node pb based on Theorem 2 as

discussed next.

www.manaraa.com

128

4.3.2 Testing Potentially Blocked Nodes

4.3.2.1 Algorithm – Checking a Potentially Blocked Node

We first develop an algorithm, say CHK_BLK_NODE, which can check one

potentially blocked node, as shown in Figure 4-11. The algorithm for checking multiple

potentially blocked nodes will be shown shortly.

The basic idea of algorithm CHK_BLK_NODE is that we try to find an AND-Split

node upstream of pb. If we do not succeed, then we can conclude pb is a deadlock

causing node; otherwise, we further test whether there are two paths starting from this

AND-Split node joining at pb without passing any OR-Split nodes. If we can find two

such paths, then pb is actually not blocked. Otherwise, we try to find a bypass starting

from this AND-Split for node pb. If such a bypass exists, then pb is not a deadlock

causing node; otherwise, it is. The steps of the algorithm are discussed in more detail

below.

An AND-Join node pb has two predecessors, pb.pred_left and pb.pred_right.

Assuming pb is blocked, the path from only one predecessor can be taken at one time into

pb. Suppose this predecessor is called pred1, and the other pred2. The algorithm calls the

Procedure Remove_paths alternately to remove the paths leading to the blocked node

from each predecessor. In Step RP1, we start from pred1 and trace backward paths to

remove all paths that have been taken in order to make this incoming path execute, until

we reach either the start node or an AND-Split in each backward path.

www.manaraa.com

129

Moreover, for pb if the incoming path from pred1 is taken, it means the other

incoming path from pred2 is disabled. The disabled path is removed. In Step RP2, we

Figure 4-11: Algorithm — Checking a Potentially Blocked Node

Algorithm CHK_BLK_NODE

Input: workflow wf, potentially blocked node pb
Output:result∈{1,2,3} /* 1:"pb is not blocked",2:"pb is blocked but
 not deadlock causing", 3:"pb is deadlock causing"*/
if (pb.in[0]=="L") {pred1 = pb.pred_left; pred2 = pb.pred_right;}
else {pred1 = pb.pred_right; pred2 = pb.pred_left;}
flag = 0; result = 0; wf' = wf /*make a copy of the original workflow */
for (i=1,2) { /* loop two times */
Remove_paths(wf, pb);
(RES1) if (flag == 1) {result = 1; return(result); exit();}/Report Result*/
 else {
 if(only start and end nodes are left and are disconnected)
 {result = 3; return(result); exit();} /* deadlock causing node */
 else {result = 2; /* a bypass is found */
 if(i == 2) {return(result); exit(); } }}

(RES2) if (pb.in[1] ≠ '-') { flag = 0; wf = wf';
 if (pb.in[1] == "L")
 {pred1 = pb.pred_left; pred2 = pb.pred_right;}
 else {pred1 = pb.pred_right; pred2 = pb.pred_left;}}
 else { return(result); exit() ;}
} /*outer for loop*/
Procedure Remove_paths(wf, pb) {
/* RP1: Remove the paths taken to reach node pb via pred1 */
(RP1.1) Starting from pred1 (if pred1 exists) remove any activity node, join
node, or OR-Split node in the backward path.
(RP1.2) Stop when either the start node or an AND-Split node is reached. Call
the AND-Split node AS1.
(RP1.3) If the AND-Split node is "disconnected", i.e., its predecessor or both
of its successors have been removed, it should be removed.
/*RP2: Remove all paths that are disabled from reaching node pb*/
(RP2.1) Starting from pred2 (if pred2 exists), remove any activity node, join
node or AND-Split node (AS2 ≠ AS1) in the backward path. If AS2 = AS1, then
set flag = 1 and skip to REP
(RP2.2) Stop on reaching the start node or an OR-Split node.
(RP2.3) If the OR-Split node is "disconnected", i.e., its predecessor or both
of its successors have been removed, it should be removed.
/*RP3: Remove "disconnected" nodes*/
(RP3.1) Recursively remove any disconnected node (except start and end nodes),
i.e., one with its successors(s) or predecessor(s) completely missing.
(RP3.2) Remove any AND-Join node (except potentially blocked nodes) with only
one predecessor and one successor, since it needs two predecessors to make it
executable.
(RP3.3) Repeat (1) & (2) until no further removal is possible.
(RP3.4) Change any AND-Split node, OR-Split node, or OR-Join node that has
only one predecessor and one successor to a "dummy" activity node, say
Dummy_n.
} /*end of procedure Remove_paths*/

www.manaraa.com

130

remove any nodes along the backward paths starting from pred2, until either the start

node or an OR-Split node is reached in each of those paths. If an OR-Split node is

reached, this node may lead a path away from pb and thus make pb blocked.

Nevertheless, this path could become a bypass for pb, so we keep this node and stop

removing more nodes in this path. However, if this backward path passes through an

And-split node that was already encountered in step RP1, then we can conclude pb is not

blocked (see Lemma 6 below).

Then, in step RP3 we reorganize the truncated workflow by removing

disconnected nodes and simplifying nodes with one missing branch. However, in Step

RP3.2 (see Figure 4-11), if an AND-Join node with only one predecessor was identified

as a potentially blocked node, this node should be kept for further testing. Moreover, after

RP1-3, if the workflow has multiple potentially blocked nodes, the truncated workflow

may still contain some of them. We will continue testing these nodes in the same

approach, as we will discuss shortly. Note that in the truncated workflow, a potentially

blocked node may have only one predecessor because the other has been removed in the

test. During the continuing test, we apply Steps RP1 (or RP2) only when the

corresponding predecessor exists (i.e., pred1 exists for RP1 and pred2 exists for RP2, as

described in Figure 4-11).

Note that, if pb.in = "LR", the outer loop is normally repeated twice – we test the

workflow instance with the left and right branches of pb alternately. However, if pb.in =

"L-" or "R-", then the loop is executed only once and the results are produced in step

RES1. If, in fact, pb is not blocked (indicated by flag = 1), the algorithm shows the final

result and stops. Here there is no need for the second iteration even if pb.in = "LR". If

www.manaraa.com

131

after RP3, the start and the end nodes are disconnected, we can conclude pb is a deadlock

causing node and the algorithm can stop without the need for a second iteration (even if

pb.in = "LR"). Otherwise, Step RES2 initiates a second iteration of the algorithm to check

the case where the right branch of pb is taken and the left one is not. Note that pb is not

deadlock causing only if both iterations return a result "blocked but not deadlock

causing" (i.e., result=2). This situation will be illustrated by an example shortly.

4.3.2.2 Algorithm – Checking Multiple Potentially Blocked Nodes

So far we only considered workflows with one potentially blocked node. In

general, workflows may have multiple potentially blocked nodes. In order to handle

multiple such nodes, we can start with one node, and apply Algorithm CHK_BLK_NODE to

simplify the workflow by removing various paths leading up to it. Now, in the simplified

workflow (if not disconnected) we can again repeat the same procedure, if there are still

blocked nodes remaining in it. In this way, the workflow is successively simplified until

either a deadlock causing node is found, or the simplified workflow contains no

potentially blocked nodes. If two nodes, say pb1 and pb2, have no path between them, we

can choose to test either one first. We can show that the sequence of testing them will not

affect the final result (see Lemma 12 in Appendix B). To make the test more efficient, we

can arrange potentially blocked nodes such that upstream nodes are tested first. If an

upstream node cannot be bypassed, obviously, there is no need to test downstream nodes.

However, we do not include this optimization in our algorithm.

www.manaraa.com

132

The algorithm CHK_MULT_BLK_NODES is an extension of Algorithm

CHK_BLK_NODE and is shown in Figure 4-12. This is a recursive algorithm and it uses the

same procedure Remove_paths used in CHK_BLK_NODE. After the first blocked node is

diagnosed, and a deadlock is not found, it updates the list of the remaining potentially

blocked nodes and calls itself again to check them. If at any stage a potentially blocked

node leads to deadlock, then the algorithm can give a result value of '3' to indicate a

deadlock and terminate. Otherwise, the algorithm loops through all the potentially

blocked nodes, and returns a final result value of '1' or '2'. Note that the call to procedure

Remove_paths is made by reference so it returns a truncated workflow after removing

certain paths from it.

Based on our discussion, the complexity of this algorithm can be estimated as

follows. Since in the worst case, each iteration needs to go through all nodes in the

workflow and two iterations are needed for pb.in='LR', the complexity of this algorithm

is O(Nn1 + (2N)n2), where N is number of nodes in the workflow, n1 is the number of

potentially blocked nodes with pb.in='L-' or pb.in='R-', and n2 is the number of

potentially blocked nodes with pb.in='LR'. However, in average, the computation is much

less because (1) if a node is found to be deadlock causing or actually non-blocked, there

is no need for the second iteration; and (2) in case of multiple potentially blocked nodes,

after testing one node, some workflow nodes are removed and the workflow is simplified.

www.manaraa.com

133

Lemma 5: Algorithm CHK _BLK_NODE is correct.

Proof sketch: The correctness argument follows from Theorem 2. Suppose a

potentially blocked node, say pb is tested. Through Step RP1, we try to find an AND-

Split node, say AS1, upstream of pb. There are three possible cases. (1) If AS1 does not

exist, pb cannot be bypassed. In this case, the start node is reached in Step RP1 and after

Steps RP2-3, only the start and the end nodes are left. Then in Step RES1, the correct

conclusion is drawn. (2) If AS1 is found, one possibility is that AS1 node is removed in

Step RP2.1. Step RES1 shows pb is actually not blocked, according to Lemma 6 (see

below). (3) If AS1 is found and Step RP2 finds an OR-Split node, say OS1, Step RP3

Figure 4-12: Algorithm – Checking Multiple Potentially Blocked Nodes

Algorithm CHK_MULT_BLK_NODES

Input: workflow wf, /* wf has an array of potentially blocked nodes wf.PB[] */
 previous test result /* the default value of result = 1 */
Output: result∈{1,2,3} /* 1:"no blocked nodes", 2:"blocked but not deadlock

causing nodes", 3:"deadlock causing nodes" */

pb = PB[0];
if (pb.in[0]=="L") {pred1 = pb.pred_left; pred2 = pb.pred_right;} else
 {pred1 = pb.pred_right; pred2 = pb.pred_left;}
flag = 0; wf' = wf;
for (i=1,2) { /* loop two times */
Remove_paths(wf, pb) /* see Procedure Remove_paths in Figure 11*/
/* Result */
(RES1) if (flag == 1) {
 wf = wf'; remove pb from PB[]; /*use original workflow, update PB[]*/
 if (wf.PB[] ≠ Ø) {result = CHK_MULT_BLK_NODES(wf, result);}
 return(result); exit();}
 else {
 if (only start and end nodes are left and are disconnected)
 {result = 3; return(result); exit();}
 else{ result = 2; remove pb from PB[];
 if (wf.PB[] ≠ Ø) {result = CHK_MULT_BLK_NODES(wf, result);}
 if (i == 2) {return(result); exit();}}

(RES2) if (pb.in[1] ≠ '-') {
 if (pb.in[1] == "L") {pred1 = pb.pred_left; pred2 = pb.pred_right;}
 else {pred1 = pb.pred_right; pred2 = pb.pred_left;}
 flag = 0; wf = wf';
 else { return(result); exit(); }

} /*outer for loop*/

www.manaraa.com

134

searches for a bypass. According to Theorem 2, such a bypass should be from AS1 to an

OR-Join node downstream of pb, say OJ1. If OJ1 does not exist, Step RP3 will reach the

end node and return a disconnected workflow. Therefore, Step RES1 gives the correct

conclusion that pb is a deadlock causing node. If OJ1 exists, a bypass is found and Step

RES1 concludes correctly. Also, if pb.in="LR", we repeat Steps RP1-4 to test the other

situation where the right incoming path of pb is taken but the left is not. ■

The proof for CHK_MULT_BLK_NODES is similar to the above proof for

CHK_BLK_NODE algorithm, but is omitted for brevity. Next we illustrate these steps with

examples.

4.3.2.3 Examples

Example 1: Figure 4-13(a) shows a workflow where C1J is a potentially blocked

because of (C1S C3S C1J) [
] (C3S C1J C3J). After Step RP1, we remove A2 and then reach

an AND-Split node C1S. We stop removing nodes and C1S is kept. When we continue to

execute Step RP2, we remove the path {A6, C2J, A5} and keep C3S. In another path, we

remove {A3, C2S, A1, C1S}. Then we find that we need to remove the AND-Split node

C1S that was kept after Step RP1, as shown in 4-13 (b). For this situation, we can prove

that C1J is actually not blocked.

www.manaraa.com

135

Lemma 6: A potentially blocked node pb is actually not blocked if an AND-Split

node reached in Step RP1 (as a stopping point) is also reached in Step RP2.

Proof: Say, we reach an AND-Split node in Step RP1 while tracing backwards

from pred1. The algorithm does not trace the backward path any further. Let us call this

node AS1. Then, in step RP2, the algorithm again traces the backward path from pred2.

Let us say it reaches another AND-Split node, called AS2. Normally, the algorithm

requires this node to be removed and the backward tracing to continue. However, if

AS1=AS2, it means that there are two clear paths from AS1 to node pb, both these paths

can be taken. Hence, node pb is, in fact, not blocked. ■

As an intuitive explanation, in the workflow shown in 4-13(a), actually we can

always find two concurrent paths {C1S, A2, C1J} and {C1S, A1, C2S, A3, C2J, A6, C1J}

between C1S and C1J and these two paths contain no OR-Split nodes.

andA1

A2

and

or

and

A3

A8

A4

A6A7

or

C1S

C1J

C2S

C2J

C3J

orA5

C3S

andA1

A2

and

or

and

A3

A8

A4

A6A7

or

C1S

C1J

C2S

C2J

C3J

orA5

C3S

x

x

x
x

x

x

x x

xx

Notes:

RP1: remove A2 and keep C1S

RP2: remove paths {A6, C2J,
A5} and {A3, C2S, A1, C1S}.
C1S is removed, in contrast to
the result in Step RP1.
Therefore, C1J is in fact not
blocked.

(a) pb = C1J, pb.in = "R-" (b) Applying Steps RP1-2

Figure 4-13: Example 1: Non-blocked Node C1J

www.manaraa.com

136

Example 2: Figure 4-14 (a) shows a workflow that is similar to the one in our

motivating example of Figure 4-1, but slightly larger. Here C2J is potentially blocked.

After Step RP1, we remove A3 and stop at an AND-Split node C2S. Next, we need to test

whether there is a bypass originating from this AND-Split node or the potentially blocked

nodes are actually not blocked. This is done by Step RP2. During Step RP2, we remove

A5 and then reach an OR-Split node C3S. In Step RP3, we remove C2J and A6. The

result is shown in 4-14 (b). After reorganizing the remaining nodes, we get a workflow as

shown in 4-14 (c), where C2S, C3S and C3J are highlighted as dummy activities nodes.

Clearly, this workflow is correct and is a bypass of node C2J since it can proceed to node

C3J, a downstream node of C2J.

Example 3: In Figure 4-15 (a), C1J is potentially blocked and C1J.in = "LR". At

one time, only one incoming path is taken and therefore C1J is potentially blocked. To

orA1

A2
and

or

or

A3

and

A8

A4

A7
A6

or

C1S

C1J

C2S

C2J

C3J

C3S

A5

orA1

A2
and

or

or

A3

and

A8

A4

A7
A6

or

C1S

C1J

C2S

C2J

C3J

C3S

A5

x
x

x x
x

x

orA1

A2

or

A8

A4

A7

C1S

C1J

C2S

C3J

C3S

(a) pb = C2J, pb.in = "L-" (b) Step RP1: remove A3 and keep C2S
Step RP2: remove A5 and keep C3S
Step RP3: remove C2J and A6

(c) Find a bypass. C2J is not
a deadlock causing node

Figure 4-14: Example 2: A Deadlock-free Workflow with Blocked Node C2J

www.manaraa.com

137

test whether this workflow is deadlock-free, we need to perform two tests by alternately

setting pred1 to C1J.pred_left and C1J.pred_right.

In Test 1 as shown in Figure 4-15 (b), only the incoming path from A1 is taken.

After Step RP1, we remove A1 and C1S, and then reach the start node. In this case, the

workflow is deadlocked. In Test 2 as shown in Figure 4-15 (c), the incoming path from

A2 is chosen. After Steps RP1-3, we remove nodes as shown in Figure 4-15 (c).

Therefore, we find a bypass as shown in Figure 4-15 (d) and conclude that this workflow

is not deadlocked in this case. Only if both tests show that C1J is not a deadlock causing

node, we can conclude this workflow is deadlock-free; otherwise, the workflow can be

deadlocked in some case.

Example 4: Figure 4-16(a) shows a workflow with three blocked nodes, C1J, C3J,

and C5J. Now we need to determine whether this workflow is deadlocked. We can test

any one of them first, say C5J. We remove nodes as shown in Figure 4-16(b). At this

or

and

C1S

C1J

C2S

C2J

and

or

A1

A2
A3

or

and

C1S

C1J

C2S

C2J

and

or

A1

A2
A3

x

x

x

x

x

x

x

x

x

x

or

and

C1S

C1J

C2S

C2J

and

or

A1

A2
A3

x

x

x

x

x

C1S

C2S

C2J

A3

(a) pb = C1J
pb.in = "LR"

(b) Test 1: pb.in[0] = "L"
Steps RP1-3: only the start
and the end nodes are left.

(c) Test 2: pb.in[1] = "R"
RP1: remove A2 and reach C2S.
RP2: remove A1 and reach C1S
RP3: remove C1J

(d) Find a bypass for
Test 2

Figure 4-15: Example 3: Testing Blocked Node C1J and C1J.in = "LR"

www.manaraa.com

138

stage, it is still hard to tell whether C5J can be bypassed since there are blocked nodes in

the remaining workflow. So we determine whether C3J can be bypassed (again, we may

also choose C1J instead of C3J here) by repeating Steps RP1-4. We remove paths as

shown in Figure 4-16(c). After reorganizing the remaining workflow, we get a structured

workflow as shown in 4-16(d). Obviously, C4J, the downstream node of C5J and C3J

can be reached. Therefore, both C5J and C3J can be bypassed and this workflow is not

deadlocked. Note that C1J and C3J cannot be blocked at the same time. Similarly, we can

also show C1J can also be bypassed. In general, these three potentially blocked nodes can

be tested in any sequence and we always get the same result.

and

A1

A2

and

and

or

A3

or

A9

A4

A7

A8 or

C1S

C2J

C2S

C4S

C4J

C3J

and

or

and

A5 A6

and
C1J

C3S
C5S

C5J

and

A1

A2

and

and

or

A3

or

A9

A4

A7

A8 or

C1S

C2J

C2S

C4S

C4J

C3J

and

or

and

A5 A6

and
C1J

C3S
C5S

C5J

x

x

x

x

x

and

A1

A2

and

and

or

A3

or

A9

A4

A7

A8 or

C1S

C2J

C2S

C4S

C4J

C3J

and

and
C1J

C3S

x

x

x

x
x

x

x

and

A1

A2
A3

A8

C1S

C2S

C4S

C4J

and
C1J

C3S

(a) blocked nodes C1J, C3J,
and C5J

(b) Test C5J, C5J.in = "LR" (c) Test C3J, C3J.in =
"R-"

(d) Find a bypass

Figure 4-16: A Workflow with Multiple Potentially Blocked Nodes

www.manaraa.com

139

4.3.3 Multiple Instances

Multiple instances (see Definition 8) are another structural flaw that was

illustrated in Figure 4-2. Multiple instances usually arise because of mismatched (AND,

OR) pairs, and do not cause deadlocks. In some special cases, an (AND, OR) pair may

not lead to multiple instances – for example, if there is a blocked node in one path from

the AND-Split node to the OR-Join node. An example of this situation is shown in

Figure 4-17. In Figure 4-17, since both C2J and C3J are blocked nodes, one path from

C1S to C1J is actually blocked. Therefore, there are no multiple instances at C1J.

However, multiple instances alone do not result in deadlock and these structures are

examples of weakly correct workflows (see Definitions 12-13). Our diagnosis algorithm

checks for multiple instances and reports them.

Figure 4-18 gives a simple algorithm which checks a mismatched (AND, OR)

pair, say (s, j), and reports whether this pair leads to multiple instances. It should be note

that if a blocked node, say b, is in one branch from s to j and the other branch becomes

the bypass of b, then there are no multiple instances.

and

or

and

orand

and

C1S

C1J

C2S

C2J

C3J

C3S

A1 A2

A4A3

A5 A6A7

Figure 4-17: A Workflow with (AND, OR) Pair; No Multiple Instances

www.manaraa.com

140

4.4 Finding Equivalent Structured Mappings

So far, we have discussed various structural flaws and the verification of

workflow correctness. However, in practice, most workflow tools support structured

workflows despite the fact that unstructured workflows could also be correct. Aalst et al.

[5] have compared 15 main workflow management systems in terms of a set of selected

workflow patterns, and showed none of these systems supports all these patterns, but all

of them can support structured workflows. Since most workflow products impose

different structural constraints, while structured workflows are widely supported, the

mapping may bridge the gap between process modeling and workflow implementation.

Moreover, with the mapping technique, during initial process modeling, structural

constraints can be released and attention can be focused on precisely capturing business

requirements. Later on, workflow verification and implementation issues are considered

with the mapping techniques. This is certainly a preferable approach to designing

workflow systems. Also, by showing that some correct unstructured workflows have no

Figure 4-18: Algorithm for Checking Multiple Instances

Algorithm MULTI_INSTANCES

Input: a mismatched (AND,OR) pair (s, j), blocked nodes B[]
Output: result ∈{0,1} /* 0: multiple instances

 1: no multiple instances in some workflow instances */
result = 0;
for (each b in B[])
{ if (b is in a path from s to j)
 { if (j == first downstream node of b in the bypass of b)
 {result = 1;} /* the bypass of b is the other branch from s to j,
 therefore, j is only activated once */
 }
}
return(result);

www.manaraa.com

141

equivalent structured mappings, we suggest that workflow tools should give specific

considerations to those workflows in order to support a larger variety of process

scenarios.

In this section, we will discuss the mappings from unstructured workflows to

structured ones. [45] discusses such transformations mainly through examples. In this

essay, we will precisely describe the scenarios where structured mappings exist and

design an approach to developing equivalent structured mappings. We start with

equivalence preserving mappings.

4.4.1 Equivalence Preserving Mapping

The equivalence between two workflows can be checked by bisimulation game

[45]. Based on the concept of bisimulation games, workflow A can simulate workflow B

if A can imitate any movement (e.g., starting or finishing the workflow, or completing an

activity,) of B. If A can simulate B, and B can also simulate A, then we say A and B are

equivalent, or A is the equivalent mapping of B. For example, in Figure 4-19, workflow

wf1 is unstructured because of (C1S, C1J)[
](C2S, C2J). Workflow wf2 is an equivalent

structured mapping of wf1.

However, not every workflow has equivalent mapping. In some case, workflow A

is only quasi-equivalent to workflow B.

Definition 14 (Quasi-equivalent or q-equivalent mapping): A mapping from

workflow A to workflow B is quasi-equivalent if A can simulate B, but B cannot simulate

A. ■

www.manaraa.com

142

As an example, consider the two workflow patterns in Figure 4-20. Here, based

on bisimulation games, Workflow wf1 can simulate Workflow wf2, but wf2 cannot

simulate wf1. In wf1, the possible completed execution paths (or interleavings) are

A1A2B, A2A1B, A1BA2, and A2BA1, but only A1A2B and A2A1B are the possible paths

of wf2. In other words, wf1 is more expressive than wf2. Thus, this mapping is not

completely equivalence preserving. However, such a quasi-equivalent mapping can help

in the verification of complicated workflows involving OR-Join elements as we will see

later.

or

or

BA

or

E

D

or

C2S

C1S

C1J

C2J

E

Workflow wf2
(Mapping of wf1)

or

or

BA

or

E

D

or
C2S

C1S

C1J

C2J

Workflow wf1 (Type 1)

Figure 4-19: A workflow with its Equivalent Structured Mapping

Workflow wf1

and or

A1

A2

B

C1S C1J

and and

A1

A2

B

Workflow wf2

C1JC1S

Figure 4-20: An Unstructured Workflow with Q-equivalent Mapping

www.manaraa.com

143

4.4.2 Possibility of Equivalence Preserving Mapping

Intuitively, if an unstructured workflow has an equivalent structured mapping, it

must be strictly correct, because the structured mapping can never simulate any structural

flaws, and to preserve equivalence, the original workflow need not produce any structural

flaws. Therefore, we state Lemma 7 without proof as follows.

Lemma 7: Only strictly correct (unstructured) workflows can have equivalent

structured mappings. ■

Therefore, according to our analytical results, we can enumerate all scenarios of

unstructured workflows and discuss their possibilities of structured mappings as follows:

(1) An unstructured workflow with only improper nesting in the form of (AND,

AND)[
](AND, AND) or (OR, OR)[

](OR, OR) may have structured mappings (see

Lemma 4 and Lemma 7). This case is referred to as AND-AND (or OR-OR)

improper nesting. We will discuss those workflows in Section 4.4.3.

(2) Unstructured workflows with improper nesting in the form of (AND, AND)[
](OR,

OR) lead to potentially blocked nodes (see Theorem 1 and the example shown in

Figure 4-1). This case is referred to as AND-OR Improper nesting. In general, these

workflows may not have structured mappings, but there are some exceptions, as we

will discuss in Section 4.4.4.

(3) Unstructured workflows with mismatched pairs cannot have equivalent structured

mappings, since every structured mapping contains no mismatched pairs and any

mapping from one node type to another cannot be completely equivalence

preserving. Q-equivalent mappings are an example in this case. We will discuss Q-

www.manaraa.com

144

equivalent mappings for workflows with mismatched (AND, OR) pairs in Section

4.4.5.

4.4.3 OR-OR/AND-AND Improper Nesting

Unstructured workflows with OR-OR improper nesting (i.e., in the form of (OR,

OR) [
] (OR, OR)), such as the one in Figure 4-19, always have equivalent structured

mappings. Next, we will develop a simple algorithm as shown in Figure 4-21 for

generating those mappings. First, we define adjacent join nodes.

Figure 4-21: Algorithm for Mapping Workflows with OR-OR Improper Nesting

Algorithm EQUIV_OR

Input: workflow wf, first-order improper nesting (C1S, C1J)[](C2S C1J C2J)
Output: wf /* improper nesting is replaced by its equivalent structured

mapping*/

if (C1J is adjacent to C2J)
{ find pred1∈C1J.Pred[] s.t. a path exists from C2S to pred1 or pred1==C2S;
 find pred2 s.t. pred2∈C1J.Pred[] and pred2 ≠ pred1;
 find pred3∈C2J.Pred[]) s.t. a path exists from C1J to pred3 OR pred3==C1J;
 succ1 = C1J.succ[0];
 succ2 = C2J.succ[0]; /*Note: A Join node has only one successor*/

 disconnect C1J from pred1;
 disconnect C2J from pred3;
 disconnect succ2 from C2J;

 if (pred3 ≠ C1J) /* Now copy the path from C2J to C1J*/
 {p1 = path from succ1 to pred3;
 p1' = p1;
 n1 = First_node(p1');
 n2 = Last_node(p1');
 connect pred1 to n1;
 connect n2 to C2J;
 disconnect succ1 from C1J;
 disconnect C1J from pred2;
 connect succ1 to pred2; connect both pred3 and C2J to C1J;}
 else {connect pred1 to C2J; connect C2J to C1J; }

 C1J.succ[0] = succ2; } /* switch C1J with C2J */

www.manaraa.com

145

Definition 15 (Adjacent join nodes): Two join nodes are adjacent, if there are

only activities, but no other control nodes between them. ■

For example, In Figure 4-22(a), there exists first-order improper nesting (C1S C2S

C1J) [
] (C2S C1J C2J) and C1J is adjacent to C2J. An intuitive observation is that, if we

push C1J down below C2J, we can correct such improper nesting. In general, in a

workflow with improper nesting, two adjacent join nodes always exist. Next, we use an

example to illustrate the algorithm for correcting such improper nesting.

Example: 4-22(a) shows a workflow with 3 split and 3 join control elements. The

improper nesting relationships are (C1S C2S C1J) [
] (C2S C1J C2J), (C1S C3S C1J) [

] (C3S

C1J C3J), and (C3S C2J C3J) [] (C2S C2J).

Only (C1S C2S C1J) [
] (C2S C1J C2J) is a first-order improper nesting. We can

remove this improper nesting using the algorithm above, and obtain workflow wf2 shown

in Figure 4-22(b). In wf2, only one improper nesting (C1S C3S C1J) [
] (C3S C1J C3J)

remains. We continue this procedure and get the final transformation shown as workflow

wf3 in Figure 4-22(c).

orA1 A2

or or

A3
A4

or

A5

A6

A8

A7

or

or

C1S

C2S C3S

C1J

C2J

C3J

(a) Workflow wf1

orA1 A2

or or

A3
A4

or

A5

A6 A8

A7

or

or

C1S

C2S C3S

C1J

C2J

C3J

(b) Workflow wf2

A6

orA1 A2

or or

A3
A4

or

A5

A6 A8

A7

or

or

C1S

C2S C3S

C1J

C2J

C3J

(c) Workflow wf3

A6

A7

Figure 4-22: Steps in Mapping Unstructured wf1 into Structured wf3

www.manaraa.com

146

Next, we discuss the structured mappings of AND-AND improper nesting.

Theorem 3: In a workflow that contains (AND, AND) [
] (AND, AND) nesting, if

there is at least one activity between these two AND-Split nodes, and at least one activity

between these two AND-Join nodes, this workflow does not have an equivalent

structured mapping.

Proof: The proof is based on construction and uses Figure 4-23. Two scenarios

are constructed for creating a structured mapping by: removing activity D and pushing v

down (Figure 4-23(b)), or removing activity B and pushing s up (Figure 4-23 (c)). Then,

we argue that in either case the removed activity cannot be reinserted without disturbing

the order of activities in Figure 4-23(a). Therefore, the structured mapping is not

possible. ■

However, Theorem 3 does not cover situations in Figure 4-24(a) where B (or D)

does not exist. In such cases, structured mappings are possible. This is because we can

(a) Unstructured workflow with
(AND, AND)[

](AND, AND)

and

and

and

and

u

v

s

j

A C
E

D

A

and

and

B

and

C

and

E

D

u

v

s

j

and

and

and

and

u

v

s

A

B

C E
j

(b) Pushing v down
(Node D removed)

(c) Pushing s up
(Node B removed)

Figure 4-23: AND-AND Improper Nesting; No Structured Mappings

www.manaraa.com

147

"merge" two AND-Split nodes, C1S and C2S, and then split again with re-distributed

outgoing arcs, as shown in Figure 4-24 (b).

Figure 4-25 gives an algorithm which develops structured mapping for such

workflows.

(a) Improper nesting example (b) Structured mapping

Figure 4-24: Equivalent Structured Mapping of a Special AND-AND Improper Nesting

Figure 4-25: Algorithm for Mapping Workflows with AND-AND Improper Nesting

Algorithm EQUIV_AND

Input: workflow wf, improper nesting (C1S C2S C1J)[](C2S,C2J) or
 (C1S,C1J)[](C2S C2J C2J)
Output: wf
/* if a structured mapping is found, the improper nesting is replaced by it */

if((C1S C2S C1J)[](C2S,C2J) and C2S∈C1S.Succ[]) /*C1S is directly connected

to C2S*/
{find succ1∈C2S.Succ[] s.t. ∃ a path from succ1 to C1J or succ1 == C1J;
 pred1 = C1S.pred[0]; /* assign the only predecessor of C1S to pred1 */
 disconnect C2S from C1S; disconnect succ1 from C2S;
 disconnect C1S from pred1; connect C1S to succ1;
 connect C2S to C1S; connect pred1 to C2S} /*switch C1S with C2S*/

if ((C1S,C1J)[](C2S C1J C2J) and C1J∈C2J.Pred[]) /*C1J is directly connected to

C2J*/
{find pred1∈C1J.Pred[] s.t. ∃ a path from C2S to pred1 or pred1 == C2S;
 succ1 = C2J.succ[0]; /* assign the only successor of C2J to succ1 */
 disconnect C1J from C2J; disconnect pred1 from C1J;
 disconnect C2J from succ1; connect pred1 to C2J;
 connect C2J to C1J; connect C1J to succ1;} /*switch C2J with C1J*/

A

and

and

and

C

and

E

D

C1S

C1J

C2J

A

and

and

and

C

and

E

D

C1J

C2J

C2S
C2S

C1S

www.manaraa.com

148

4.4.4 AND-OR Improper Nesting and Overlapping Structures

In general, unstructured workflows of this type lead to blocked nodes (see

Theorem 1) and therefore they do not have any structured mappings. An overlapping

structure as shown in Figure 4-26(a) is an exception. An overlapping structure is strictly

correct and it has an equivalent structured mapping as shown in Figure 4-26(b).

Definition 16 (Overlapping structures): A workflow is called an overlapping

structure if it can satisfy the following three conditions:

(1) An OR-Split has two corresponding OR-Join nodes, say (C1S, C1J) and (C1S, C1J′),

and a AND-Join node corresponds two AND-Split nodes, say (C2S, C2J) and (C2S′,

C2J); and

(2) Each pair is nested with the other three pairs, i.e., there is only third-order improper

nesting among these six nodes: (C1S, C1J) [] { (C1S, C1J′), (C2S, C2J), (C2S′, C2J) },

(C1S, C1J′) [
] { (C1S, C1J), (C2S, C2J), (C2S′, C2J) }, (C2S, C2J) [

] { (C1S, C1J),

(C1S, C1J′), (C2S′, C2J) }, (C2S′, C2J) [] { (C1S, C1J), (C1S, C1J′), (C2S, C2J) }.

and

and

ED

or

I J

K

C1J C1J’

C2J

or

A

B C

and

GF

or

and

and

ED

or

I J

K

or

A

B C

and

GF

and

IJ

(a) Overlapping Structure (b) Structured mapping

C1S

C2S C2S’

C1S

C2S C2S’

C1J

C2J C2J’

Figure 4-26: An overlapping Structure and Its Mapping

www.manaraa.com

149

(3) C1J and C1J′ are adjacent to C2J. ■

4.4.5 Q-equivalent Mappings for Mismatched (AND, OR) Pairs

Unstructured workflows with mismatched (AND, OR) pairs may have quasi-

equivalent mappings, as shown in Figure 4-20. However, in some situations q-equivalent

mappings do not exist. Next, we state those situations in Lemma 8.

Lemma 8: An (AND, OR) cannot be (quasi) mapped to an (AND, AND) pair if

this pair is a part of improper nesting (AND OR OR)[
](OR, OR) and in the mapping the

AND-Join node becomes a blocked node.

Proof: This statement can be proved using the argument of contradiction. Suppose

the (AND, OR) pair can be mapped (AND, AND). Therefore, the corresponding

improper nesting becomes (AND OR AND)[
](OR, OR), which leads to potentially blocked

nodes, by Theorem 1. Further, the AND-Join node is proved to be truly blocked in the

mapping. However, (AND, OR)[
](OR, OR) does not produce any blocked nodes.

Therefore, the original workflow cannot simulate the mapping. Obviously, by Definition

14, the mapping is not quasi-equivalent. ■

4.5 Introducing Loops

So far we only considered acyclic workflows, i.e. in these workflows there were

no paths that created cycles. Next, we turn to consider workflows where loops may be

present. Loops consist of a cycle having one entrance at an OR-Join element and one exit

www.manaraa.com

150

from an OR-Split element. These two elements do not have corresponding elements to

them in the sense of Definition 4. However, they are said to "correspond" to each other

(for loops), and every loop will have such a pair of choice elements. In Figure 4-27, C1S

and C1J are such distinguished nodes. In a structured loop (see Figure 4-4), there are no

other exits from or entrances into the loop path. However, in a general loop additional

entrances and exits may exist. We call these as situations of improper nesting into the

loop. In this section, we are primarily interested in loops with at least one OR-Join that

serves as an entrance, and one OR-Split that serves as an exit from the loop. Then, we

consider scenarios involving additional entrances and exits.

Definition 17 (Entrances and Exits of a loop): a join node j in a loop is an

entrance if one of j’s predecessors is not in the loop. A split node s in a loop is an exit if

one of its successors is not in the loop. A loop must have an OR-Join node as a primary

entrance and an OR-Split node as a primary exit. It may have join nodes as additional

entrances or split nodes as additional exits. ■

or

or

B

A
or

E

D

or
C2S

C1J

C1S

C2J

or

or

B

A or

E
D

or

C1J

C1J

C2S

C2J

(a) Entering structure into a loop (b) Exit structure from a loop

Figure 4-27: Structures Entering and Leaving loops

www.manaraa.com

151

4.5.1 Scenarios and Taxonomy

Figure 4-27 shows the corresponding scenarios of interest. In both these figures

there is a correspondence between C2S and C2J nodes. In Figure 4-27 (a), C2J lies on

the loop and C2S is outside the loop, while in Figure 4-27 (b), it is the other way around.

There are four combinations of values for the C2S and C2J pairs, and these are

considered in Table 4-2 and Table 4-3, which correspond to Figure 4-27 (a) and Figure 4-

27(b) respectively. The tables show that in both scenarios, 2 out of 4 cases behave

similarly and are acceptable. When the split-join combination is OR-OR, the workflow is

strictly correct and also has a corresponding structured representation. The AND-OR

combination leads to multiple instances, and in an entering structure, it has a q-equivalent

mapping. A third combination AND-AND, causes a deadlock for an entering structure,

but works well in the exit structure. The semantics in this case is as follows: if there are

multiple passes through the loop, then activity D will get invoked repeatedly. However,

when the loop is exited, then the AND control element C2J will be activated. From a

semantic perspective, the results from the most recent execution of D should be regarded,

while the earlier ones can be ignored. The last structure in the table is OR-AND that leads

to deadlock. Clearly the behavior in the case of an entrance versus an exit from the loop

is not symmetric. Next, we see how equivalent mappings of structures with loops can be

created.

www.manaraa.com

152

4.5.2 Mappings

Next, to appreciate how a q-equivalent structured mapping can be created for a

Type 1N workflow from Table 4-2, consider Figure 4-28(a). In the mapping shown here,

the whole loop {E, A, B, E} is duplicated and C2J, an OR-Join node, is mapped to AND-

Join. In this mapping, multiple instances can arise of activities E, A and B, which lie

inside the loop.

Similarly, a type 3N structure from Table 4-2 has an equivalent structured

mapping, as shown in Figure 4-29. A Type 3X workflow, as shown in Figure 4-30, is

well behaved, but we can show that it has no structured mapping without using auxiliary

variables.

Table 4-2: Behavior of Structures Entering a Loop

Type (C2S C2J) Correctness issues Structured Transformation

1N AND OR multiple instances q-equivalent mapping

2N OR AND deadlock No

3N OR OR strictly correct Yes

4N AND AND deadlock No

Table 4-3: Behavior of Structures Exiting a Loop

Type (C2S C2J) Correctness issues Structured Transformation

1X AND OR multiple instances No

2X OR AND deadlock No

3X OR OR strictly correct Yes

4X AND AND strictly correct No

www.manaraa.com

153

4.5.3 Results and Algorithm

Next, we discuss two main results related to loops.

Lemma 9: A workflow pattern of type 3X with a loop cannot be mapped to

structured workflows without using auxiliary variables.

Figure 4-28: Q-Equivalent Mapping of Type 1N with a Loop

or

or

B

A
or

E

D

or
C2S

CIJ

C1S

C2J

 (a) Type 3N with a loop

or

B

A

or

E

D

or
C2S

C1J

C1S

C2J

B or

(b) Equivalent mapping

Figure 4-29: Equivalent Structured Mapping of Type 3N with a Loop

or

A

or

E

D

and
C2S

C1J

C2J

E

and

(a) Type 1N with a loop

or

or

B

A or

E

D

and
C2S

C1J

C2S

C2J

(b) Q-equivalent mapping

B

or

or

A

B

C1S

C1J’

C1S’

C1J'

C1S'

www.manaraa.com

154

Proof sketch (By contradiction): The proof is based on arguing that this loop has

two exits nodes, and a different activity follows after each of these exits nodes. A

structured mapping of the loop will have only one exit node, and an auxiliary variable

would be required to determine which of the two exits was taken in order to make sure

that the correct activity follows the exit. ■

Figure 4-30 gives an example of how a mapping for this situation can be produced

with auxiliary variables. It is also observed in [45] that certain forms of unstructured

workflows cannot be transformed without the use of auxiliary variables.

Lemma 10: A Type 1X (or 4X) workflow cannot have a q-equivalent structured

(or equivalent) mapping.

Proof sketch (by contradiction): This result is proved by arguing that for a

workflow of Type 1X (see Figure 4-31), any structured mapping must contain a

structured loop and a parallel structure. The parallel structure would contain E and D in

parallel. If such a structure were inside the loop, then both E and D would be part of the

or B

A

orE

D

or

C1J

or

or

or

p

q=b

~q

~p

q=true

q

p=a

~p p

C3S

C3J

C1S

C2S

C2J

(b) Structured mapping

or

or

B

A or

E
D

or

C1J

C1S

C2S

C2J

a
~a

~b
b

(a) Type 3X (loop)

Figure 4-30: Structured Mapping of Type 3X (Loop) (With Auxiliary Variables)

www.manaraa.com

155

loop (but D is not); while, if it were outside the loop, then both would be outside (but E is

in the loop)! ■

Finally, we describe an algorithm for analyzing loops, as shown in Figure 4-32.

This algorithm first detects loops. A loop is a cycle which goes through an OR-Join node

and an OR-Split node, which, however, are not corresponding to each other by Definition

4. Next, we find the corresponding node pairs which enter or exit a loop. If the loop only

has one such pair (i.e., (C2S, C2J) in Table 4-2 and Table 4-3), we look up for the type of

the loop using Table 4-2 and Table 4-3. Then, depending upon the type of loop it takes

one of three appropriate actions: applying equivalent transformation, reporting multiple

instances, or reporting deadlocks. Note that this algorithm is only able to handle cases of

loops with only one additional entrance or only one additional exit constructed by a

corresponding pair. If a loop enters or exits another loop or it has more than one

additional entrance and/or more than one additional exit, our algorithm simply reports it.

Simplification techniques, such as cycle reducibility analysis [47], may be needed to

analyze such complicated unstructured loops.

or

or

B

A and

E
D

or

C1J

C1S

C2S

C2J~b
b

Figure 4-31: Type 1X (Loop)

www.manaraa.com

156

4.6 Workflow Diagnosis Algorithm and Results

4.6.1 Algorithm Outline

In this section, we introduce a workflow diagnosis algorithm based on the

analysis in the previous section. Figure 4-33 shows the outline of this algorithm.

Figure 4-32: Algorithm for Analyzing Unstructured Loops

Algorithm LOOPS

Input: workflow wf
Output: modified wf /* loops are analyzed and results are displayed*/

/* step 1: Detect loops*/
L0 = Ø; i = 0;
for (each OR-Join node j)
 if (∃ path {j,…,s,…j} s.t. s is an OR-Split node and
 s is not corresponding to j)
 if (j ∉ any Lk, k ≤ i) {let Li(j,s) be the loop; i++; Li = Ø; }

/*step 2: Analyze loops */
for (each loop L(j,s))
{ entrances = 0; exits = 0 ; /* number of additional entrances and exits */
 N_pairs[] = Ø; X_pairs[] = Ø; /*array of additional entrance or exit pairs*/
 L.Type = Ø ; /*Type of loop L(j,s) will be determined later */

 for (each join node j1 in L, j1≠j)
 { if(∃ n∈j1.pred[] and n∉L)
 { entrances ++; /*j1 is an entrance if one of its predecessors∉L */
 if (∃ s1 s.t. (s1, j1)) {add (s1, j1) to N_pairs[];} }
 for (each split node s2 in L, s2≠s)
 { if (∃ n∈s2.succ[] and n∉L)
 { exits ++; /* s2 is an exit if one of its successors∉L */
 if (∃ j2 s.t. (s2, j2)) {add (s2, j2) to X_pairs[]; } }

 if (entrances == 0 and exits == 0) { report L(j,s) is a structured loop; }
 elseif (entrances+exits == 1)
 /* only 1 additional entrance or 1 additional exit*/
 { determine L.Type using node pairs in N_pairs[] and X_pairs[];
 /* From Table 4-2 and Table 4-3 */
 if (L.Type ≠ Ø) { switch (L.Type)
 { case('1N','3N','3X'): apply equivalent transformation;
 case('1N', '1X'): report multiple instances;
 case('2N','2X','4N'): report deadlocks;} }
 else { report another loop entering or exiting L(j,s) ;} }
 else { report L(j,s) has more than one entrance and more than one exit; }}

www.manaraa.com

157

The input of this algorithm is a text file of a workflow graph. A sample input file

will be provided later. After the algorithm reads an input file, it executes nine steps in

order to provide a detailed analysis report. These nine steps are explained next. The first

step is to calculate corresponding node pairs and determine mismatched pairs. The next

step is to determine improper nesting based on corresponding pairs. In Step 3,

unstructured loops are handled as using Algorithm LOOPS (see Figure 4-32). Then, Step 4

deals with improper nestings in the form of (OR, OR)[
](OR, OR) using Algorithm

EQUIV_OR (see Figure 4-21). Equivalent structured mappings for such situations are

developed. After mapping, improper nesting is reduced. Moreover, this step also finds

structured mappings for overlapping structures (by Definition 16) and replaces the

original structures using the mappings in order to further reduce improper nesting. Step 5

handles improper nesting of type (AND, AND)[
](AND, AND) using Algorithm

EQUIV_AND (see Figure 4-25). Step 6 detects potentially blocked nodes in improper

Figure 4-33: The Outline of the Workflow Diagnosis Algorithm

1. Find corresponding node pairs
and determine mismatched pairs

(Definitions 4-5)

2. Determine improper nesting
(Definition 6)

3. Handle unstructured loops
(Algorithm LOOPS)

4. Develop mappings for
 (OR, OR) [] (OR, OR)

(Algorithm EQUIV_OR)

5. Develop mappings for
(AND, AND) [] (AND, AND)
(Algorithm EQUIV_AND)

6. Find potentially blocked nodes:
the AND-Join nodes

 in (OR, AND) pairs and
in (AND OR AND)[

](OR, OR/AND)

7. Verify every potentially blocked
node and check if a bypass exists

for a blocked node
(Algorithm CHK_BLK_NODE/
CHK_MULT_BLK_NODES)

8. Check (AND, OR) pair and
report multiple instances

(Algorithm MULTI_INSTANCES)

9. Report

www.manaraa.com

158

nestings of the type (AND OR AND) [
] (OR, OR) or in mismatched (OR, AND) pairs.

Step 7 verifies whether a potentially blocked node is indeed blocked, and if it is, whether

it has a bypass. The detailed algorithms for this were shown in Figure 4-11 and Figure 4-

12. Then, step 8 determines whether an (AND, OR) pair leads to multiple instances using

Algorithm MULTI_INSTANCE (see Figure 4-18). The last step provides a detailed

diagnosis report that records results of each step and draws conclusions on the workflow

correctness.

Lemma 11: The Workflow Diagnosis Algorithm is correct.

Proof: This algorithm produces correct results since each step (except step 9,

which reports results) is based on Definitions or proven Theorems. Steps 1-2 calculates

corresponding node pairs, mismatched pairs and improper nestings per their definitions

(see Definitions 4-6). Step 3 handles loops based on our results in Section 4.5, which are

theoretically developed or proven (see Lemmas 9-10). Also, Lemma 4 and Lemma 7

ensure the correctness of step 4. Step 5 uses Theorem 3 and Lemma 4. Step 6 directly

comes from Theorem 1 and Algorithms CHK_BLK_NODE and CHK_MULT_BLK_NODES

used in step 7 are developed based on Theorem 2 and Lemma 5, as we discussed in

Section 4.3.2. Finally, step 8 directly follows the definition of multiple instances (see

Definition 8). ■

This algorithm is implemented in C. The detailed algorithm is available on our

web site: http://zen.smeal.psu.edu/~emily/bypass_algorithm.htm.

www.manaraa.com

159

4.6.2 Experimental Results

Figure 4-34(a) shows a workflow that is presented in [82], Sadiq and Orlowska

developed an algorithm to verify the correctness of this workflow, but the detailed causes

for structural flaws are not provided. Using our algorithm, we can provide a detailed

analysis report for it.

This is clearly a non-trivial complex workflow with 59 nodes and 14

corresponding pairs. This algorithm can diagnose such a workflow within a few seconds.

A part of the input file is shown in Figure 4-35. For example, the second line describes

the start node in this workflow. It only has one successor, C1J in the column "succ_left",

but without any predecessors in the columns "pred_left" and "pred_right". The third line

and
C1S

C2S

C3S
C4S

C7S
C6S

C2J

C1J

C8S

A1and

or andA4

A5

A3

A2

or

C3J

A6

A7

A8

and

A9 A10and

C4J

A11

and

A14

A15

and

C5S

C5J

A18

A16

andA12 A13

andA17and

C6J
orA19

A20or

A21 and

C8J

C7J
and

and

and

A31

C2S’

C2J’

C10S C11S

C10S’

C11J

or

A22 A23

and

A24

or

A25

A26
and

or
C9J’

A27
or

C9J

A29and

or

C10J

A30

A28

C9S

C10S
C11S

C10S’

C11J

or

A22 A23

and

A24

or

A25

A26

and

and

C10J
A27

and

C9J

A29

or

or

C10J’

A30

A28

C9S

A29

A27

A30

(a) A complex workflow (b) Structured mapping of the
dotted part in (a)

Figure 4-34: A Diagnosis Experiment

www.manaraa.com

160

describes node C1S, which has the start node as the only predecessor and two successors,

A1 and C9S. A summary of the analysis results as shown in Figure 4-36.

Node pred_left pred_right succ_left succ_right Node Type

Start - - C1S - Start
C1S Start - A1 C9S AND-Split
A1 C1S - C2S - Activity

C9S C1S - A22 A23 OR-Split
……

C3J A3 C2S' A6 - OR-Join
……

C4J A7 A9 A11 - AND-Join
……

End C1J - - - End

As the report shows, the algorithm first reads the workflow definition from the

input file, and determines corresponding pairs and improper nestings. Then, in Step (4),

the algorithm detects an overlapping structure (see the dotted part in Figure 4-34(a)) and

develops an equivalent structured mapping for it, as shown in Figure 4-34(b). Then, the

corresponding pairs and improper nestings are re-calculated and now the number of

improperly nested structures is reduced from 16 to 10. Moreover, this step handles (C9S,

C9J)[
](C11S, C11J), an improper nesting of type (OR, OR)[

](OR, OR). A mapping is

generated and replaces (C9S, C9J)[
](C11S, C11J). Figure 4-34(b) also shows this

structured mapping. In addition, this workflow also contains improper nestings in the

form of (AND, AND)[
](AND, AND), but there is no structured mapping for any of them,

because neither the two of AND-Split nodes nor the two AND-Join nodes are directly

connected (see Theorem 3).

Figure 4-35: A Snippet of a Sample Algorithm Input File

www.manaraa.com

161

However, in Step 6, because of (AND, AND)[
](OR, OR) improper nestings, C2J

and C2J' are potentially blocked nodes. Since C2J' is upstream of C2J, in Step 8, C2J' is

tested and it turns out to be a deadlock causing node. Then there is no need for testing

C2J. In summary, this workflow is not deadlock-free.

Therefore, to improve this workflow, first of all, we need to correct improper

nesting (C2S', C2J)[
](C3S, C3J). For example, we can suggest placing C2S' downstream

of C3J and therefore (C2S', C2J) will be no longer improperly nested with (C3S, C3J).

Alternatively, we could make (C3S, C3J) an AND pair and then change the improper

Analysis Report of Workflow
Step (1)
Find pairs of corresponding nodes: 14 pairs
(C1S,C1J), (C9S,C9J'), (C9S,C9J),(C2S',C2J), (C2S,C2J'), (C3S,C3J)...
The number of workflow nodes: 59
Number of mismatched pairs: 0

Step (2)
Find improper nesting structures:
AND-AND: 8 AND-OR: 5 OR-OR: 3 Total: 16

Step (4)
Find an overlapping structure:(C9S,C9J'), (C9S,C9J), (C10S,C10J),
(C10S',C10J)
A mapping is generated and the workflow is updated
Re-find pairs of corresponding nodes: 14 pairs
(C1S,C1J), (C9S,C9J'), (C9S,C9J),(C2S',C2J),(C2S,C2J'),(C3S,C3J) ...
Number of mismatched pairs: 0
Re-find improper nesting structures:
AND-AND: 7 AND-OR: 2 OR-OR: 1 Total: 10

Find improper nesting of OR-OR: (C9S,C9J)[](C11S,C11J)
A mapping is generated and the workflow is updated
Re-find improper nesting structures:
AND-AND: 7 AND-OR: 2 OR-OR: 0 Total: 9

Step (6)
Potentially blocked nodes: C2J' in (C3S,C3J)[](C2S,C2J'), C2J'.in="R-"
 C2J in (C3S,C3J)[](C2S',C2J), C2J.in="L-"
Step (7)
C2J' is blocked and cannot be bypassed.
C2J is a downstream node of C2J'. C2J is blocked and has no bypass.

Conclusion
Is the workflow structured? ------- No
Does this workflow have equivalent structured mapping? ----- No

 Is the workflow deadlock-free? --- No, C2J' is a deadlock causing node

Figure 4-36: Analysis Report of Workflow in Figure 4-34

www.manaraa.com

162

nesting in the form of (AND, AND)[
](OR, OR) to that in the form of (AND,

AND)[
](AND, AND). Certainly, we need to ensure that the workflow can still capture

desired semantics after such modifications.

4.7 Discussion and Conclusion

Traditionally, workflows are verified by strict notions of correctness such as

structuredness. However, as workflow processes become more complex, structured

workflows are not able to offer the desired flexibility and expressive power. In this paper,

we have created formal taxonomy of unstructured workflows based on a notion of

improper nesting and mismatched pairs. We have shown how this taxonomy can help in

analyzing unstructured workflows and determining whether they are correct, and if so

whether they can be transformed into equivalent structured mappings. Such an

equivalent structured mapping may involve some redundancies, but it gives another way

to verify that a workflow is correct. Moreover, as mentioned earlier most tools do not

support unstructured workflows; however, if some kinds of unstructured workflows can

be mapped into structured ones, this can provide an easy way to increase the expressive

power of the workflows that can be supported by these tools.

Moreover, we introduced a relaxed notion of correctness for unstructured

workflows and developed an algorithm to diagnose them. Our notion of relaxed

correctness is called weak correctness. In a weakly correct workflow there are some

blocked nodes; however, they do not prevent the workflow from completing. The

www.manaraa.com

163

blocked nodes can also represent some exceptions or abnormal situations designed into

the workflow as contingency plans, as illustrated by the example shown in Figure 4-1.

However, such workflows must be carefully verified. Our diagnosis algorithm

detects structural flaws based on the taxonomy. It provides detailed causes for blocked

nodes, deadlocks and multiple instances. This research helps investigate how to achieve

workflow correctness and flexibility in process modeling.

The main contributions of this work

are to: (1) motivate the need for and formally

introduce a new class of weakly correct

workflows; (2) Develop ways for checking

weak correctness. As shown in Figure 4-37, the class of weakly correct workflows is

naturally larger than the class of strictly correct workflows. Intuitively, a weakly correct

workflow is deadlock free, though some paths may not finish and multiple instances of

certain activities may arise. The diagnosis algorithm can highlight such situations to the

users and help them decide if any action needs to be taken. The distinction between

workflows with deadlocks and ones with blocked nodes (but no deadlocks) is crucial to

our notion of weak correctness. In previous research this distinction has not been made.

The complexity of our algorithm is limited by step 7 of Figure 4-33, and it is exponential

in the number of potentially blocked nodes in the worst case, but much less in the average

case.

We expect our future work to focus on applying the taxonomy and the algorithm

to dynamic workflows [76, 77] and exception handling. Also, it would be interesting to

investigate patterns for supply chain process integration under this framework.

 Weakly
 correct

Strictly
correct

All
workflows

Figure 4-37: Classes of workflows

www.manaraa.com

Chapter 5

Discussion and Conclusions

5.1 Summary

In this dissertation, we proposed an integrated framework to study information

sharing, event management and process verification. Under this framework, first, inter-

organizational processes are modeled formally by UML diagrams and information

sharing is captured by a parameterized model based on the ECA rules. By adjusting

parameters in the model, we get different supply chain configurations and these

configurations are evaluated in terms of supply chain performance. These configurations

are stored as organizational memory in supply chains.

Second, we analyzed causes and effects of supply chain events in order to select

suitable configurations as a response to significant events. We used time colored Petri

nets to model causal and temporal relationships between events. Seven basic event

patterns were developed to capture common scenarios of supply chain events. The set of

event patterns is extensible. For example, new patterns can be created by combining the

basic patterns. By mapping an event rule to a pattern, one can set up a Petri net model for

this rule easily. We used dependency graphs to visualize the causal dependencies

between events. Moreover, we performed sensitivity analysis and what-if scenarios

analysis to identify significant events and suggested resolution strategies for them.

Third, supply chain configurations and event management require correct

business processes. We studied process verification based on workflow technologies.

www.manaraa.com

165

There are two types of workflows, structured and unstructured. Structured workflows are

strictly correct but restricted. Unstructured workflows may be incorrect but they can

model a variety of process scenarios. Since unstructured workflows provide more

flexibility in modeling complicated inter-organizational processes, we proposed an

analysis taxonomy for unstructured workflows. This taxonomy categorizes unstructured

workflow along two dimensions, mismatched pairs and improper nesting. Using this

taxonomy, we analyzed different types of unstructured workflows and showed their

correctness of each type. We extended the concept of strict workflow correctness and

introduced a notion of weak correctness, which emphasizes proper termination of a

workflow. A diagnosis algorithm was developed based on the taxonomy to verify the

strict or weak correctness of workflows. This algorithm can detect structural flaws,

indicate causes of those flaws, and suggest how to fix them. In addition, the algorithm

can show the possibility of transforming unstructured workflows to structured ones and

develop equivalent or quasi-equivalent structured mappings.

In summary, information sharing, event management and process management

are three key components in supply chain management. These issues were studied

thoroughly in this thesis and solutions were proposed to solve issues including supply

chain configurability, sense-and-respond capability and process verification. We

demonstrated an integrated framework for studying these issues. Under this framework,

information sharing is leveraged to achieve supply chain configurations, configurations

are means of responding to supply chain events, and correct inter-organizational

processes ensure successful execution of information sharing and configurations.

www.manaraa.com

166

5.2 Contributions

This dissertation makes the following contributions:

(1) We provided a methodology for the design of configurable supply chains based on

information sharing. The methodology consists of several steps, many of which can

be automated (or partially automated) using well-known technologies like UML,

XML, and ECA rules. We explored different supply chain configurations, such as

daily information sharing, weekly information sharing, mixed daily and weekly

information sharing, and sharing information about the occurrences of events, and

showed their effectiveness in terms of supply chain performance. We learned that

supply chain changes, such as changes in cost structures, market competitiveness and

demand variability, and exceptions can lead to different information sharing

requirements and supply chains should adjust their information sharing in a timely

manner in order to achieve the best performance.

(2) We developed an innovative approach to modeling events and event dependencies

formally in the context of supply chain management. This approach can capture

timing and causal relationships between events precisely. We also performed

comprehensive simulation experiments to analyze events and compare event

resolution strategies in terms of supply chain performance. Therefore, we actually

showed a new method to manage supply chain performance through the lens of

events. Also, this approach is a new application of Petri nets in the area of supply

chain management.

www.manaraa.com

167

(3) We designed a simple but complete taxonomy for unstructured workflows. This

taxonomy allows us to analyze unstructured workflows and draw conclusions on

their correctness. We also provided a diagnosis algorithm that can identify structural

flaws of a workflow, point out the causes of such flaws, and derive any structured

mappings if such mappings exist. In contrast to existing approaches, our diagnosis

algorithm not only provides a Yes/No answer on the workflow correctness, but also

gives structural evidence of execution problems as well as suggestions for correcting

structural flaws.

(4) We developed a new "sense-and-respond" framework based on formal event analysis

and dynamic information sharing. This framework shows that information sharing

can be used as an effective response to supply chain events.

(5) We proposed a systematic framework to study supply chain events, information

sharing and supply chain processes. We demonstrated that in a tightly integrated

supply chain environment, any change in one of these three key components can

affect the others. This framework provides guidelines for designing proper

architectures, such as an electronic hub, in order to achieve successful supply chain

integration.

www.manaraa.com

168

5.3 Implications to Supply Chain Management Practices

5.3.1 A New Supply Chain Infrastructure

The focus of supply chain management has shifted from efficiency and cost-

effectiveness to sustainable advantage. Lee’s study [52] shows that supply chains with

outstanding performance actually possess three critical qualities: agility, adaptability and

alignment (i.e., the ability to align the interests of all supply chain partners). To foster

these three capabilities, a supply chain needs to sense changes in supply and demand in a

timely (often real-time) manner, interpret these changes, and respond to them quickly by

modifying strategies in supply, products and technologies. In addition, the alignment of

interests can only be achieved by extensive collaboration and sufficient information

sharing.

However, traditional ERP systems focus on the integrated transaction processing

inside a company but offer limited support on inter-organizational processes. Although

supply chain management applications, such as SAP, aim at providing a higher level

decision support capability across companies, they are in general not able to allow

enough flexibility to support today’s business dynamics [98]. These applications are

typically built upon a set of process reference models (for example, event-driven process

chain (EPC) modeling is used in SAP [2]), which usually allow very limited

configurability. Therefore, still most supply chain infrastructures (i.e., supply chain

management systems as well as closely related applications and tools) are not capable of

providing supply chains agility, adaptability and alignment. It has been observed that

sophisticated decision support systems, optimization techniques and artificial intelligence

www.manaraa.com

169

are merging with supply chain infrastructures in order to make supply chains sensitive to

changes and help decision making to respond to these changes quickly [84].

The results of this dissertation can contribute to the design of a supply chain

infrastructure which can meet the requirements for agility, adaptability and alignment.

Figure 5-1 shows such a supply chain infrastructure. This infrastructure contains an

information sharing and event management hub, which analyzes events and facilitates

information sharing between partners by choosing suitable supply chain configurations

(see Section 2.6). Figure 5-1 also describes the interactions between the hub and ERP or

supply chain applications. In this infrastructure, ERP systems or supply chain

applications provide planning, transactional and process-related data to the hub. As a

feedback, the changes in supply chain configurations will indicate the adjustment in ERP

systems or supply chain applications, such as modifications to business processes and

system reconfigurations. Kapoor et al. [42] designed a similar infrastructure in support of

sense-and-respond capability. Their architecture enables an enterprise to proactively

monitor trends in demand and help it act in a timely manner by optimization techniques.

On the other hand, our infrastructure focuses on how information sharing can be

leveraged to achieve sense-and-respond capability in a supply chain. Certainly,

optimization techniques can also be included in our architecture as a new module, for

example, to discover demand changes, performance exceptions or event patterns by

mining shared data objects. Such a module can make our architecture more powerful and

able to support decision making on a wider range of supply chain problems.

Also note that the event management and information sharing hub actually acts as

a decision support tool. This tool collects data and events, analyzes them, and helps a

www.manaraa.com

170

supply chain make decisions in a timely manner. A unique feature is that the decisions

are related to information sharing and inter-organizational processes in a supply chain,

and, therefore, they are stored as supply chain configurations.

5.3.2 Organizational Memory

A supply chain configuration is one type of "organizational memory".

Organizational memory refers to "stored information about a decision stimulus and

response that, when retrieved, comes to bear on present decisions" [93]. A configuration

captures a supply chain’s experience in reacting to a particular event and change. When

the same event or change recurs or a similar one happens, this configuration can provide

Figure 5-1: A Supply Chain Architecture

Information Sharing and
Event Management hub

ERP systems
Supply chain applications

Planning data
Transactional data
Process-related data

Supply chain
partner(s)

Supply chain
partner(s)

Information flow
engine

Event
engine

Change S. C.
configurations

Information flows Information flows

S.C.
configuration
store

Shared data
objects

Process modifications
System reconfigurations

www.manaraa.com

171

inference capability in responding to it. For example, in Section 2.5.5.3, we showed that

when the demand variability is not stable, overall, the configuration with mixed daily and

weekly information can achieve a better performance than that with pure daily or weekly

information sharing. Therefore, when a supply chain faces a non-stationary demand (for

example, because of various promotions), the mixed information sharing could be a

feasible strategy to cope with the variation in demand.

Similarly, event rules can be another type of "organizational memory". Typically,

an event rule shows the cause-effect relationships between events. The "cause" events are

"decision stimuli" and the "effect" events result from the decision taken. Such a decision,

which has been verified by previous experience, is clearly defined as a business rule or an

event aggregation rule. An illustrating example is that "three out-of-stock events

happening during a week" indicate potential supply problems and a supply chain manager

should be notified immediately. This event rule clearly tells how to respond to three

repetitive occurrences of out-of-stock events.

Moreover, in this research, not only did we clearly identify two types of

organizational memory, but we also defined how information from such organizational

memory can be stored, retrieved and utilized. Supply chain configurations are stored as

ECA rules and can be queried and simulated. For event rules, we designed event patterns

to classify this type of "organizational memory". Further, we developed a Petri net based

approach to automatically retrieve information from this type of memory for decision

making.

www.manaraa.com

172

5.4 Limitations and Future Work

We recognize some limitations of this research and the opportunity they present

for future work. First, we focused on a framework for configuring supply chains only on

the operational and tactical levels. Strategic configurations of supply chains have not

been explored. A strategic supply chain configuration refers to a set of selected process

categories, the detailed information sharing requirements, and supply chain partnerships

pertaining to each process category. SCOR model [87] defines 30 process categories,

such as make-to-order and engineer-to-order, and a "supply chain configuration" consists

of a set of selected process categories. However, SCOR model does not address how to

implement such a "configuration" and how to switch from one "configuration" to another.

We plan to extend our framework to strategic supply chain configurations. For example,

as supply chains are increasingly opting for make-to-order (MTO) or make-to-stock

(MTS) operations that match supply to demand more closely, strategic configurations can

help the implementation of these types of operations because they describe the specific

partnerships (e.g., Vendor Managed Inventory, Collaborative Design etc.), specific

information sharing patterns (i.e., by the parameterized information sharing model), and

detailed inter-organizational processes. We expect to further investigate information

sharing between process categories in the SCOR model and derive configurations for

supply chains in a strategic context.

Second, the validation of supply chain configurations needs to be further

extended. Each configuration should be validated both syntactically and semantically.

Syntactically, the ECA rules in each configuration should have no conflict. We proposed

www.manaraa.com

173

a relational data model to validate data dependencies between ECA rules (i.e., one

information flow causes a change to a shared data object and this change triggers another

information flow). Certainly, we also need to validate complicated composite events and

XQUERY conditions in ECA rules. Semantically, we need to ensure the validity of each

parameter in an ECA rule. For example, if the "condition" parameter in an ECA rule

specifies the required order fill rate, this parameter can only be adjusted in a reasonable

value range. In general, to ensure a configuration semantically correct, we may need to

define specific data range for each parameter. Also, the dependencies between ECA rules

should follow business practices. For example, in the VMI arrangement, after the

customer shares the demand with the vendor, the vendor should propose a replenishment

order for the customer to confirm it, rather than send a ship notice to the customer

directly. Therefore, we plan to develop a detailed procedure for verifying supply chain

configurations syntactically and semantically.

Third, simulation is the main evaluation method in this research. We used

simulation to evaluate supply chain configurations. As we pointed out in Section 2.5.6,

for the illustrating examples provided, simulation probably is the most convenient

evaluation tool. Other evaluation tool, such as optimization techniques, may be used to

evaluate a configuration if theoretical models for configurations can be set up and

elegantly solved. In addition, we also used simulation to test our Petri net based approach

for event management. The limitation of this approach is that we may not derive all

possible event dependency graphs, as we pointed at the end of Section 3.5.2. However,

traditional theoretical analysis based on reachability techniques [14, 91] may not be able

to discover all dependency graphs for the Petri nets used in this research either, since

www.manaraa.com

174

these techniques can only perform reachability analysis for relatively small and simple

Petri nets while large time color Petri nets are typically required to model complicated

supply chain events. Therefore, in future work, it will be useful to design an algorithm or

heuristic that can automatically generate dependency graphs containing events of interest.

Finally, although the diagnosis algorithm developed in Chapter 4.6.1 can analyze

most types of unstructured workflows, it may not be able to deal with (or completely

handle) some special cases. These cases include: (1) unstructured loops with more than

one additional entrance and/or more than one additional exit, or unstructured loops

entering/exiting other loops; and (2) unstructured workflows with only second-order or

higher-order improper nesting in the form of (OR, OR)[
](OR, OR). For such unstructured

loops in (1), this algorithm simply detects and reports them without further analysis. For

(2), this algorithm can conclude that they are strictly correct, but it cannot develop

equivalent structured mappings for them. Certainly, these tasks will be tackled as future

exercises.

www.manaraa.com

Bibliography

1. Aalst, W.M.P. van der. “The application of Petri nets to workflow management,”
The journal of Circuits, Systems and Computes, 7(1):21-66, 1997.

2. Aalst, W.M.P. van der. “Formalization and Verification of Event-driven Process
Chains,” Information and Software Technology, 41(10):639--650, 1999.

3. Aalst, W.M.P. van der, and B., Hofstede. “Verification of Workflow Task
Structures: A Petri-net- based approach,” Information Systems, 25(1):43-69, 2000.

4. Aalst, W. M. P. van der, Hee, K. M. van. Workflow Management: Models,
Methods, and Systems, MIT Press 2002.

5. Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., and Barros, A.P.
“Workflow Patterns,” Distributed and Parallel Databases, 14(1):5-51, 2003.

6. Alvarenga, C. A., and Schoenthaler, R.C. “A New Take on Supply Chain Event
Management,” Supply Chain Management Review. March/April. 2003, pp. 29-35.

7. Alonso, G., Casati, F., Kuno, H. and Machiraju, V. Web Services Concepts,
Architectures and Applications, Springer Verlag, 2004.

8. Amerom, M.V., and Speyer, M. “XML and Supply Chain Management,” Supply
Chain Management 5(1):12-14, 2000.

9. Anderson, D., and Lee, H. “Synchronized Supply Chains: The New Frontier,”
Achieving Supply Chain Excellence Through Technology, Montgomery Research,
Volume 1, April 15, 1999 (available online at http://www.ascet.com).

10. Angulo, A., Nachtmann, H and Waller, M. “Supply Chain Information Sharing in
a Vendor Managed Inventory Partnership,” Journal of Business Logistics
25(1):101-116, 2004.

11. Asgekar, V. “Event Management Graduates with Distinction,” Supply Chain
Management Review, September/October 2003, pp. 15-16.

12. Ayers, J. B. Supply chain project management: a structured collaborative and
measurable approach, St. Lucie Press, Boca Raton, FL, 2004.

13. Ball, M. O., Ma, M., Raschid, and L., Zhao, Z. “Supply Chain Infrastructures:
System Integration and Information Sharing,” ACM SIGMOD Record. 31(1),
2002.

www.manaraa.com

176

14. Berthomieu, B., and Diaz, M. “Modeling and Verification of Time Dependent
Systems Using Time Petri Nets,” IEEE Transactions on Software Engineering,
17(3):259-275, 1991.

15. Bi, H. and Zhao, L. “Process logic for verifying the correctness of business
process models,” Proceedings of International Conference on Information
Systems (ICIS 2004), Washington, D.C. , December 12-15, 2004.

16. Bodendorf, F. and Zimmermann, R. “Proactive Supply-Chain Event Management
with Agent Technology,” International Journal of Electronic Commerce, 9(4):
57-89, Summer 2005.

17. Carlson, D. Modeling XML Applications with UML: Practical e-Business
Applications, Addison-Wesley, 2001.

18. Casati, F., Du, W. and Shan, M. “Semantic Mapping of Events,” HP Labs
Technical, HPL-98-74 980421.

19. Choi, Y and Zhao, J. L. “Decomposition-Based Verification of Cyclic
Workflows,” In Proceedings of Automated Technology for Verification and
Analysis: Third International Symposium (ATVA 2005), Lecture Notes in
Computer Science, (3707):84-98, Springer-Verlag, 2005.

20. Chopra, S., and Meindl, P. Supply Chain Management, Prentice Hall, Upper
Saddle River, NJ, 2001.

21. Christensen, and S., Hansen, N.D. "Coloured Petri Nets Extended with Place
Capacities, Test Arcs and Inhibitor Arcs", Application and Theory of Petri Nets
1993, Marsan, M. A. (ed.), Lecture Notes in Computer Science, 691, pp.186-205.
Springer-Verlag, Berlin, 1993.

22. Christiaanse, E. “Performance Benefits through Integration Hubs,”
Communication of ACM 48(4):95-100, 2005.

23. Christopher, M., and Peck, H. “Building the Resilient Supply Chain,” The
International Journal of Logistics Management 5(2):1-13. 2004.

24. Covisint. Covisint Media Kit (available online at http://www.covisint.com), 2004.

25. Duffy, R., and Fearne, A. “The Impact of Supply Chain Partnerships on Supplier
Performance,” The International Journal of Logistics Management 15(1):57-71,
November 2004.

26. Finley, F., and Srikanth, S. “7 Imperatives for Successful Collaboration,” Supply
Chain Management Review, January/February, 2005, pp. 30-37.

www.manaraa.com

177

27. Fox, M.S., Barbuceanu, M. and Teigen, R. “Agent-Oriented Supply Chain
Management,” The International Journal of Flexible Manufacturing Systems,
(12): 165-188, 2000.

28. Gardner, R. and Harle, D. “Pattern discovery and specification translation for
alarm correlation,” In proceedings of Network Operations and Management
Symposium (NOMS’98), New Orleans, USA, February 1998, IEEE.

29. Georgakopoulos, D. and Hornick, Mark “An Overview of Workflow Management
From Process Modeling to Workflow Automation Infrastructure,” Distributed and
Parallel Database, (3):119-153, 1995.

30. Gosain, S., Malhotra, A. and El Sawy, O.A. “Coordinating for Flexibility in e-
Business Supply Chains,” Journal of Management Information Systems, 21(3): 7-
45, 2004.

31. Gruschke, B. “Integrated Event Management: Event Correlation Using
Dependency Graphs”, In Proceedings of the 9th IFIP/IEEE International
Workshop on Distributed Systems: Operations & Management (DSOM 98),
Newark, DE, USA, October 1998.

32. Haeckel, S. H., Adaptive Enterprise: Creating and Leading Sense-and-Respond
Organizations, Harvard Business School Press, 1999.

33. Hajibashi, M. “E-Marketplaces: The Shape of the New Economy,” Achieving
Supply Chain Excellence through Technology. Montgomery Research. Volume 3,
April 15, 2001. (available online at http://www.ascet.com).

34. Hasan, M, Sugla, B., and Viswanathan, R. “A conceptual framework for network
management event correlation and filtering systems,” In M. Sloman, S.
Mazumdar, and E. Lupu, editors, Integrated Network Management VI, pages
233–246, Boston, MA, May 1999.

35. Hofstede, A.H.M. ter, Orlowska, M.E, and Rajapakse, J. “Verification Problems
in Conceptual Workflow Specifications,” Data and Knowledge Engineering,
24(3): 239-256, 1998.

36. Holten, R. Dreiling, A., zur Muehlen, and M., Becker, J. “Enabling Technologies
for Supply Chain Process Management,” Proceedings of the IRMA 2002
Conference, Seattle, 2002.

37. Horvath, L. “Collaboration: The key to value creation in supply chain
management,” Supply Chain Management: An International Journal 6(5):205-
207, 2001.

38. IBM MQSeries, http://www-306.ibm.com/software/integration/wmq/.

www.manaraa.com

178

39. IBM Rational XDE, Version 2003.06.12, http://www-
306.ibm.com/software/awdtools/developer/rosexde/, 2003.

40. Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume 1, Springer-Verlag, Berlin Heidelberg, 1996.

41. Jensen, K. “An Introduction to the Practical Use of Coloured Petri Nets,” Lectures
on Petri Nets II: Applications, Reisig, W and Rozenberg, G (eds.), Lecture Notes
in Computer Science, (1492):237-292, Springer-Verlag 1998.

42. Kapoor, S., Bhattacharya, K., Buckley, S., Chowdhary, P., Ettl, M., Katircioglu,
K., Mauch, E., and Phillips, L. “A technical framework for sense-and-respond
business management,” IBM Systems Journal, March, 2005.

43. Keaton, M. “Using the Gamma Distribution to Model Demand when Lead Time
is Random, ” Journal of Business Logistics 16(1): 107-131, 1995.

44. Kelton, D., Sadowski, R. and Sturrock, D. Simulation with Arena, Mc Graw Hill,
New York, 2004.

45. Kiepuszewski, B., Hofstede, A.H.M, and Bussler, C. “On Structured Workflow
Modeling” In Proceedings CAiSE'2000, LNCS Vol. 1797, Springer Verlag.

46. Kiepuszewski, B. "Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows", PhD thesis, Queensland University of Technology,
Brisbane, Australia, 2002.

47. Koehler, J., Hauser, R., Sendall, S. and Wahler, M. “Declarative techniques for
model-driven business process integration,” IBM Systems Journal, March, 2005

48. Lee H., Padmanabhan, V., and Whang, S. “The bullwhip effect in supply chains,”
Sloan Management Review 38(3):93-102, 1997.

49. Lee, H., and Whang, S. “Information sharing in a supply chain,” International
Journal of Manufacturing Technology and Management 1(1):79-93, 2000.

50. Lee, H., and Whang, S. “E-Business and Supply Chain Integration,” Stanford
Global Supply Chain Management Forum. Stanford University Report SGSCMF-
W2-2001. Stanford CA. 2001.

51. Lee, H. “Simple Theories for Complex Logistics,” Optimize, Issue 22, 2004.

52. Lee, H. “The Triple-A Supply Chain,” Harvard Business Review, October 2004,
pp.102-112.

53. Lee, H., Padmanabhan, V. and Whang, S. “The Bullwhip Effect in Supply
Chains,” Sloan Management Review (38):93-102, 1997.

www.manaraa.com

179

54. Lewis, L. “A case–based reasoning approach to the resolution of faults in
communication networks,” In Proceedings of the IFIP TC6/WG6.6 Third
International Sysposium on Integrated Network Management, Hegering, H. G.
and Yemini, Y. (eds.) San Francisco, USA, April 1993, pp. 671–682.

55. Li, G., Yan, H., Wang, S. and Xia, Y. “Comparative Analaysis on Value of
Information Sharing in Supply Chains,” Supply Chain Management, 10(1): 34-
46, 2005.

56. Linthicum, D. “Understanding Supply Chain Integration,” B2B Application
Integration. Addison-Wesley, Indianapolis, IN, 2001, pp. 313-324.

57. Liu, N.K and Dillon, T. “An approach towards the verification of expert systems
using numerical Petri net,” International Journal of Intelligent Systems, 6(3):255-
276. 1991.

58. Liu, R., and Kumar, A. “Leveraging Information Sharing to Increase Supply
Chain Configurability,” Proceedings of International Conference on Information
Systems (ICIS 2003), S. T. March, A. Massey, and J. I. DeGross (eds.), Seattle,
2003, pp.523-536.

59. Liu, R., Kumar, A., and Aalst, W.M.P. van der. “A Formal Modeling Approach
for Supply Chain Event Management,” In Proceedings of 14th Workshop on
Information Technologies and Systems (WITS 2004), Dutta, A. and Goes, P
(eds.). Washington D.C., December 2004, pp. 110-115.

60. Luckham, D. The Power of Events, Addison-Wesley, Boston, 2002.

61. Malhotra, A., Gosain, S. and El Sawy, O.A. “Absorptive Capacity Configurations
in Supply Chains: Gearing for Partner-enabled Market Knowledge Creation,” MIS
Quarterly, 29(1): 145-187, March 2005.

62. Malone, T. W., and Crowston, K. “The Interdisciplinary Study of Coordination,”
ACM Computing Surveys 26(1):87-119, 1994.

63. Malone, T. W., Crowston, K., Lee, J., Pentland, B.T., Dellarocas, C., Wyner, G.
M., Quimby J., Bernstein, A., Herman, G. A., Klein, M., Osborn, C. S., and
O’Donnell, E., “Tools for Inventing Organizations: Toward a Handbook of
Organizational Processes,” Management Science 45(3): 425-443, 1999.

64. Marabotti, D. “Information Technology Insights: Supply Chain Event
Management Emerges in Enterprise Software,” Chemical Market Reporter,
262(9):21-22, September 2002.

www.manaraa.com

180

65. McCarthy, D.R., and Dayal, U. “The Architecture of an Active Database System,”
Proceedings of ACM SIGMOD Conference on Management of Data, J. Clifford,
B. G. Lindsay, and D. Maier (eds.). ACM Press, New York, 1989, pp. 215-224.

66. McCrea, B. “EMS Completes the Visibility Picture,” Logistics Management,
44(6):57-61, June 2005.

67. Meseguer, P. “A New Method to Checking Rule Bases for Inconsistency: A Petri
Net Approach,” In Proceedings of the 9th European Conference on Artificial
Intelligence (ECAI-90), Stockholm, August 1990.

68. Mesquite. CSIM 19, http://www.mesquite.com/.

69. Miller H. “The Multiple Dimensions of Information Quality,” Information System
Management 13(2):79-82, Spring 1996.

70. Montgomery, N., and Waheed, R. “Supply Chain Event Management Enables
Companies to Take Control of Extended Supply Chains,” AMR Research 2001.
(available online at http://www.amrresearch.com).

71. Murata, T. “Petri Nets: Properties, Analysis and Application,” In Proceedings of
the Institute of Electrical and Electronics Engineers, 77(4): 541-580, April 1989.

72. NØkkentved, C., and Hedaa, L. “Collaborative Processes in esupply Networks,”
Proceedings of the 16th International Marketing and Purchasing Group
Conference. Bath, U.K, 2000. (available online at http://www.bath.ac.uk/imp/
tracke.htm).

73. OMG. Unified Modeling Language Specification, Version 1.5. Object
Management Group, 2003. (Available online at http://www.omg.org/
technology/documents/formal/uml.htm).

74. Poirier C. and Quinn, F. “A Survey of Supply Chain Progress,” Supply Chain
Management Review, September/October 2003, pp. 40-48.

75. Ratzer, V. A., Wells, L., Lassen, M. H, Laursen, M., Qvortrup, F. J., Stissing, S.
M., Westergaard, M., Christensen, and S., Jensen, K. “CPN Tools for Editing,
Simulating, and Analysing Coloured Petri Nets,” Applications and Theory of
Petri Nets 2003, W. van der Aalst, E. Best (Eds.), Lecture Notes in Computer
Science, (2679): 450 - 462, Springer-Verlag GmbH, 2003.

76. Reichert, M. and Dadam, P "ADEPTflex – Supporting dynamic changes of
workflows without losing control," Journal of Intelligent Information Systems---
Special Issue on Workflow Managament, 10(2):93-129, 1998.

www.manaraa.com

181

77. Rinderle, S., Reichert, M., and Dadam, P. “Correctness criteria for dynamic
changes in workflow systems - a survey,” Data and Knowledge Engineering,
50(1): 9-34, 2004.

78. RosettaNet. http://www.rosettanet.org, 2004.

79. Ross, David F. Introduction to e-Supply Chain Management. St. Lucie Press,
Boca Raton, FL, 2003.

80. Russell, N., Aalst, W.M.P.van der, Hofstede, A.H.M. ter, and Edmond, D.
Workflow Resource Patterns: Identification, Representation and Tool Support. In
O. Pastor and J. Falcao e Cunha, editors, Proceedings of the 17th Conference on
Advanced Information Systems Engineering (CAiSE'05), volume 3520 of Lecture
Notes in Computer Science, pages 216-232. Springer-Verlag, Berlin, 2005.

81. Sadiq, W. and Orlowska, M. E. “On correctness issues in conceptual modeling of
workflows,” In Proceedings of the 5th European Conference on Information
Systems (ECIS `97), Cork, Ireland, June 19-21, 1997, pp. 943-964.

82. Sadiq, W, and Orlowska, M. E. “Analyzing process models using graph reduction
techniques,” Information Systems, 25(2):117-134, 2000.

83. Shimura, T., Lobo, J. and Murata, T. “An Extended Petri Net Model for Normal
Logic Programs,” IEEE Transactions on Knowledge and Data Engineering, 7(1):
150-162, 1995.

84. Singh, N. “Emerging Technologies to Support Supply Chain Management,”
Communications of the ACM, 46(9):243-247, 2003.

85. Strozniak, P. “Exception Management,” Frontline Solutions, 3(8): 16-24, August
2002.

86. Sun eInsight Business Process Manager,
http://www.seebeyond.com/software/einsight.asp.

87. Supply-Chain Council. “Supply-Chain Operations Reference-Model, Overview of
SCOR,” Version 6.0. Supply-Chain Council, Inc, Pittsburgh, PA, 2003 (available
at http://www.supply-chain.org/scoroverview.asp).

88. Tyworth, J. E., Guo, Y. and Ganeshan, R. “Inventory Control Under Gamma
Demand and Random Lead Time,” Journal of Business Logistics, 17(1): 291-304,
1996.

89. Verbeek, H.M.W., Basten, T. and Aalst, W.M.P. van der. “Diagnosing Workflow
Processes using Woflan,” The Computer Journal, 44(4):246-279. British
Computer Society, 2001.

www.manaraa.com

182

90. Visual Object Modelers. Visual UML Software, version 3.0, 2003.

91. Wang, J. Timed Petri Nets Theory and Application, Kluwer Academic Publishers,
Boston, 1998, pp. 63-123.

92. Waller, M, Johnson, M. E. and Davis, T. “Vendor Managed Inventory in the
Retail Supply Chain,” Journal of Business Logistics, 20(1):183-203, 1999.

93. Walsh, J. P. and Ungson, G. R. “Organizational Memory,” Academy of
Management Review 16(1):57-91, 1991.

94. Wu, P., Bhatnagar, R., L. Epshtein, Shi, Z. Alarm correlation engine (ace). In
Proceedings of the 1998 IEEE Network Operations and Management Symposium
(NOMS'98), New Orleans, Louisiana, USA, 1998, pages 733-742.

95. XQuery, “XQuery 1.0: An XML Query Language,” W3C, http://www.w3.org/
TR/2005/WD-xquery-20050404/, April 2005.

96. Yu, Z., Yan, H., and Cheng, T.C. E. Benefits of Information sharing with supply
chain partnerships. Industrial Management & Data Systems 101(3):114-119,
2001.

97. Zhang, D and Nguyen, D. “PREPARE: A Tool for Knowledge Base
Verification,” IEEE Transactions on Knowledge and Data Engineering, 6(6):983-
989, 1994.

98. Zhao, Z.-Y., Ball, M. and Chen, C.-Y. “A Scalable Supply Chain Infrastructure
Research Test-Bed,” Smith Papers Online, University of Maryland, 2002
(Available online at http://bmgt3-notes.umd.edu/Faculty/KM/papers.nsf/).

99. Zuberek, W.M. “Timed Petri nets - definitions, properties, and applications,”
Microelectronics and Reliability, 31(4):627-644, 1991.

www.manaraa.com

Appendix A

Simulation of Petri net in Figure 3-18

A.1 Hierarchical CPN Mapping

Here we show how our Petri nets are implemented using CPN Tools. Figure A-1

gives a Colored Petri net (CPN or CP-net) mapping from Figure 3-18. To make this

mapping readable, a hierarchical CPN is used. In Figure A-1, each transition with a small

tag, called HS-tag, is a substitution transaction, and it is mapped onto a so-called

subpage. This CPN has three levels. The first level is shown in Figure A-1. The

transaction "rule8&9" here can be expanded as a sub-page as shown in Figure A-2 (Level

2). Furthermore, transaction "rule8" in Figure A-2 can be substituted by a sub-page as

shown in Figure A-3.

A.2 Implementation of Time Constraints

 CPN tools cannot directly support the subtle time semantics used in this paper,

but it can support timed CP-nets. In a timed CP-net, a global clock is introduced and a

token can carry a time stamp. The time stamp describes the earliest model time when the

token can be used. In addition, after firing a transition, the output tokens can be delayed

for a fixed time. The details of timed CP-nets can be found in [41].

www.manaraa.com

184

Figure A-1: CP-Net (Level 1)

Figure A-2: Subpage for "Rule8&9" (Level 2)

www.manaraa.com

185

Since CPN tools are not designed for handling time intervals attached to

transitions, we had to improvise and come up with a general approach for doing so. In

mapping a time Petri net, a "clock" was introduced with each transition that has an

associated time interval. Whenever this transition is enabled, the clock starts and then

moves independently until timeout. Figure A-5 is the mapping of the time Petri net of

Figure A-4 , and shows a timed CPN with two "clocks". In Figure A-5, transition "Start

1" fires whenever there is a token in e1. According to Figure A-4, Rule 1 should fire in

the [2,5] time interval after it is enabled. This interval is modeled by the L1.ran()

function, which generates a random number between 2 and 5. Therefore, "Timer 1" has

an initial token with a color showing the ID of event e1, allowed waiting time, and actual

waiting time 0. Then transition "Clock 1" fires. For each firing, the actual waiting time is

increased by 1 and this token will be delayed for 1 time unit. Transition "Clock 1" fires

until the allowed waiting time is reached. This is controlled by a guard "c2 < d2" placed

on this transition. At that time, if the transition "Rule 1" is still enabled, it fires. The other

"clock" controls the expiration of e1.

Figure A-3: Subpage for "Rule8" (Level 3)

www.manaraa.com

186

A.3 Implementation of Inhibitor Arcs

We can substitute inhibitor arcs with an equivalent structure as discussed in [21].

Figure A-7 shows an equivalent Petri net of Rule 1 (see Figure A-6). In Figure A-7, each

order arrival into p1 sends an empty list to the place "stockout list". Then transition

"makelist" fires if there is any token in place p2 (i.e., out-of-stock event) and this list is

appended with any item which is currently out-of-stock. In order to ensure this list is

e1

EVENT
ev ev

e2

EVENT

6

Expire

ev

ev
EVENT

e1 expired

[2, 5]

Rule 1

Figure A-4: Time Petri Net

Figure A-5: Implementation with CPN Tools

www.manaraa.com

187

completely generated before it is actually used by Rule 1, Rule 1 always fires 1 time unit

later than transition "makelist". This delay is achieved by the place "delay", where a

token arrives one time unit after transition "start" fires. Later, this list is used to control

the firing of Rule 1. Two functions are used in the guard conditions of the transitions.

Function contain(item1, itemls1) checks whether item1 exists in list itemls1 to prevent

duplicates. Function containls(itemls2, itemls1) returns true if any item of list itemls1 is

contained in list itemls2. Therefore, transition "rule 1" fires only if none of the ordered

items is in the stockout list.

p2

p6

Out-of-stock

S

Q
q

q p1

Order
arrival

Q

s
rule 1

Order
confirmed

T2

Figure A-6: Rule 1 with an Inhibitor Arc

Figure A-7: CPN Implementation of Rule 1

www.manaraa.com

Appendix B

Lemma 12

Lemma 12: If there are two potentially blocked nodes, pb1 and pb2, and there is

no path between them, the sequence of testing them will not affect the final result of

Algorithm CHK_MULT_BLK_NODES.

Proof: Suppose we first test pb1 and then pb2 (i.e., sequence pb1 pb2) in workflow

wf. There are three possible results after testing: (1) no blocked nodes (result =1); (2)

blocked but not deadlock causing (result =2); and (3) deadlock causing (result =3). Next,

by enumerating all possible cases, we show that the same result can be achieved if pb2 is

tested first followed by pb1 (in the sequence pb2 pb1).

(1) No blocked nodes (result =1)

Result = 1 is returned only if neither pb1 nor pb2 is a blocked node. In sequence

pb1 pb2, we call algorithm CHK_MULT_BLK_NODES(wf,1) to test pb1 first and result = 1.

Then we call CHK_MULT_BLK_NODES(wf,1) to test pb2 and still result = 1. Obviously, we

can reverse the sequence and get the same result for each call of the algorithm.

(2) Blocked but not deadlock causing (result =2)

In sequence pb1 pb2, we find a bypass, say pass1, from an AND-Split node, say

AS, to an OR-Join node, say OJ. By Theorem 2, AS must be an upstream node of both pb1

and pb2, and OJ must be a downstream node of both pb1 and pb2. There are two cases of

pass1:

www.manaraa.com

189

Case (a): pass1 does not contain pb2, as shown in Figure B-1(a). In this case, if we

reverse the testing sequence, we can still get bypass pass1 (i.e., result = 2).

Case (b): pass1 contains pb2. In other words, pb2 becomes unblocked in the truncated

workflow after testing pb1. In this case, two exclusive paths, say pass2 and pass3 are the

incoming paths of pb1 and pb2 respectively. Since either pass2 or pass3, but not both, can

be taken, correspondingly, either pb2 or pb1, but not both can be blocked. Therefore,

when testing one node, one of these two exclusive paths is removed, the other path can be

taken for sure, and the other node then becomes unblocked in the truncated workflow.

Thus, the testing sequence will only affect which pass (pass2 or pass3) can be removed,

but the same result (result = 2) is always drawn. An example is shown in Figure B-1(b).

During testing pb1, pass2 is not taken and therefore, pass3 becomes a certain input of pb2

and then pb2 is not blocked. Similarly, if we test pb2 first and remove pass3, pb1 becomes

unblocked in the truncated workflow. Therefore, this truncated workflow is a bypass of

pb2 and result = 2.

or

and

and

and
pb2

pas s1

AS

and

or

pb1

OJ

and

A1

A2 and

and

A3

or

A4

A7

pass3pass2

A8 or

C1S

C3S

C3J

and

C1J
(pb1)

C2S

C2J
(pb2)

x

x

x

x
x

(a) pass1 does not contain pb2

(b) The bypass of pb1 contains pb2 (or the
bypass the pb2 contains pb1)

Figure B-1: Two Types of Bypasses of Blocked Nodes

www.manaraa.com

190

(3) Deadlock causing nodes (result =3)

Still, there are two possible situations resulting in this result.

Case (i): both nodes are deadlock causing. In this case, we can test either one first and

there is no need to test the other.

Case (ii): Only one of them is deadlock causing. Suppose pb1 is deadlock causing. If we

call CHK_MULT_BLK_NODES(wf,1) to test pb1 first, we will get a disconnected workflow

where only the start and the end nodes are left. Moreover, in this case, we can show that

Proposition 1 described below is correct.

Proposition 1: For any sub-workflow of wf, say wf', which also contains pb1, the start

node and the end node, if result = 3 is returned after calling

CHK_MULT_BLK_NODES(wf,1) to test pb1, we can conclude that testing pb1 by calling

CHK_MULT_BLK_NODES(wf',1) returns the same result, and vice versa.

Proposition 1 is correct because if one path from the start node to pb1 is removed, then

the only successor of the start node is removed. As a result, this breaks every path from

the start node to the end node and then the workflow is disconnected (i.e. result = 3).

Next, we need to show that the same result = 3 is drawn in sequence pb2 pb1.

In sequence pb2 pb1, after testing pb2, a truncated workflow, say wf1, is returned.

Obviously, wf1 is a sub-workflow of wf. If we call CHK_MULT_BLK_NODES(wf1,1) to test

pb1, according to Proposition 1, we can get result = 3.■

www.manaraa.com

Appendix C

Notations

Notations Descriptions

(s, j) split node s is a corresponding node of join node j
(u, v) [] (s, j) corresponding node pair (u, v) is improperly nested with another pair (s,

j). (u, v) [
] {(x1, y1), (x2, y2),…, (xn, yn)} is used to denote n pairs of

corresponding nodes nested into (u, v)
(u s v) [] (s, j) corresponding node pair (u, v) is improperly nested with another pair (s,

j) and s is in a path from u to v, but j is not in this path
b.in

b.in = "L-"
b.in = "R-"
b.in = "LR"

b is a blocked node and b.in is a two-character string that records which
incoming paths of b is taken
the left incoming path of b is taken but the right one cannot
the right incoming path of b is taken but the left one cannot
either incoming path of b might be taken but not both

pb.pred_left the left predecessor of potentially blocked node pb
pb.pred_right the right predecessor of potentially blocked node pb
wf.PB[] workflow wf has an array of potentially blocked nodes PB[]
wf.B[] workflow wf has an array of blocked nodes B[]
C1J.Pred[] array of the predecessors of node C1J
C1J.pred[0] the first predecessor of node C1J
C1S.Succ[] array of the successors of node C1S
C1S.succ[0] the first successor of node C1S
First_node(p1) the first node in path p1
Last_node(p1) the last node in path p1
L(j, s) a loop L with join node j as its primary entrance and split node s as its

primary exit
L.Type the type of Loop L, which is one of types in Table 4-2 or Table 4-3

www.manaraa.com

VITA

Rong Liu

Education

Ph.D., Supply Chain and Information Systems, Smeal College of Business, 2006

The Pennsylvania State University

M.S., Management Information Systems, conferred during Ph.D. program, 2005

 The Pennsylvania State University

B.E., Industrial Engineering and B.E., Automation and Control, 1996

Shanghai Jiao Tong University, China

